《2024年初中升学考试模拟卷湖南省岳阳市三县六区联考中考数学一模试卷.docx》由会员分享,可在线阅读,更多相关《2024年初中升学考试模拟卷湖南省岳阳市三县六区联考中考数学一模试卷.docx(33页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年湖南省岳阳市三县六区联考中考数学一模试卷一、选择题(本大题共8小题,每小题3分,满分24分,在每道小题给出的四个选项中,选出符合要求的一项)1(3分)6的相反数是()ABC6D62(3分)一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是()ABCD3(3分)下列运算正确的是()Aa2a3a6B3a2a1C(2a2)38a6Da6a2a34(3分)从班上13名排球队员中,挑选7名个头高的参加校排球比赛若这13名队员的身高各不相同,其中队员小明想知道自己能否入选,只需知道这13名队员身高数据的()A平均数B中位数C最大值D方差5(3分)如图,直线ab,直线c分别交a,b于点A
2、,C,点B在直线b上,ABAC,若1130,则2的度数是()A30B40C50D706(3分)下列命题是真命题的是()A五边形的外角和是540B有一个角是60的三角形是等边三角形C角平分线上的点到角两边的距离相等D三角形的外心是三条高的交点7(3分)孙子算经是我国古代经典数学名著,其中有一道“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足问鸡兔各几何?”学了方程(组)后,我们可以非常顺捷地解决这个问题在这个问题中,鸡的数量为()A23B24C12D138(3分)若将抛物线F:yx22mx+m22图象位于y轴右侧的部分沿着直线l:ym22翻折,其余部分保持不变,组成新图形H,点M(m
3、+2,y1),N(m2,y2)为图形H上两点,若y1y2,则m的取值范围是()A2m0或0m2BmC2m2Dm2或m2二、填空题(本大题共8小题,每小题4分,满分32分)9(4分)代数式有意义时,x应满足的条件为 10(4分)已知m,n同时满足2m+n3与2mn1,则4m2n2的值是 11(4分)如图,在ABC中,按以下步骤作图:分别以 A、B为圆心,大于AB的长为半径画弧,相交于两点M,N;作直线MN交AC于点D,连接BD若AC12cm,边BC7cm,则BCD的周长为 cm12(4分)已知x1,x2是一元二次方程x2x20220的两根,则x1+x2x1x2 13(4分)仔细观察下列三组数:第
4、一组:1,4,9,16,25,;第二组:1,8,27,64,125,;第三组:2,8,18,32,50,;取每组数的第n个数,则这三个数的和为 14(4分)如图,从一个大正方形中截去面积为4cm2和9cm2的两个小正方形,若随机向大正方形内投一粒米,则米粒落在图中阴影部分的概率为 15(4分)如图,为了测量河对岸A,B两点间的距离,数学兴趣小组在河岸南侧选定观测点C,测得A,B均在C的北偏东37方向上,沿正东方向行走90米至观测点D,测得A在D的正北方向,B在D的北偏西53方向上则A,B两点间的距离为 米(参考数据:sin370.60,cos370.80,tan370.75)16(4分)如图,
5、在O中,AB为直径,AB10,点C为O上一点,BAC的平分线AD交BC于点E、交O于点D,连接BD(1)若BAC50,则的长为 (结果保留);(2)若DE:AE1:8,则EC 三、解答题(本大题共8小题,满分64分,解答应写出文字说明,证明过程或演算步骤)17(6分)计算:(1)0+4sin45+|3|18(6分)已知6x24x30,求(x1)2+x(x+)的值19(8分)如图,在ABC中,BAC90,直线l经过点A,过点 B、C分别作l的垂线,垂足分别为点D、E有以下三个条件:ADCE;BCl;ABC45请从中选择一个合适的作为已知条件,使DEDB+EC(1)你添加的条件是 (填写序号);(
6、2)添加了条件后,请证明DEDB+EC20(8分)学校举行“爱我中华,朗诵经典”班级朗诵比赛,李老师收集了所有参赛班级的成绩后,把成绩x(满分100分)分成四个等级(A:90x100,B:80x90,C:70x80,D:60x70)进行统计,并绘制成如图不完整的条形统计图和扇形统计图根据信息作答:(1)参赛班级总数有 个;m ;(2)补全条形统计图;(3)D所对应扇形圆心角的大小为 ;(4)统计发现D等级中七年级、八年级各有两个班,为了提高D等级班级的朗诵水平,语文组老师计划从D等级班级中任选两个班进行首轮培训,求选中两个班恰好是同一个年级的概率(用画树状图或列表法把所有可能结果表示出来)21
7、(8分)如图,已知正比例函数y1x的图象与反比例函数y2的图象相交于点A(3,n)和点 B(1)求n和k的值;(2)请结合函数图象,直接写出不等式x0的解集;(3)如图,以AO为边作菱形AOCD,使点C在x轴正半轴上,点D在第一象限,双曲线交CD于点E,连接AE、OE,求AOE的面积22(8分)六一儿童节来临之际,某商店用3000元购进一批玩具,很快售完;第二次购进时,每件的进价提高了20%,同样用3000元购进的数量比第一次少了10件(1)求第一次每件的进价为多少元?(2)若两次购进的玩具售价相同,且全部售完后利润不低于1700元,则售价至少定为多少元?23(10分)【问题情境】(1)如图,
8、在矩形ABCD中,点 E、F分别在边CD、AD上,且AEBF于点G求证:【变式思考】(2)如图,在(1)的条件下,连接CG,若CGCB,求证:点E是DC的中点;【深入探究】(3)如图,在矩形ABCD中,点 E、F、H分别在边CD、AD、BC上,且AEHF于点G,连接CG,设HCG2,且sin,若CGCH,m,求的值(用含m的代数式表示)24(10分)如图,在平面直角坐标系xOy中,抛物线F1:yx2+bx+c经过点A(1,0)和点B(3,0),与y轴交于点C,经过点A的直线l与y轴的负半轴交于点D,与抛物线F1交于点E,且ODOA(1)求抛物线F1的解析式;(2)如图,点P是抛物线F1上位于x
9、轴下方的一动点,连接CP、EP,CP与直线l交于点Q,设EPQ和ECQ的面积为S1和S2,求的最大值;(3)如图,将抛物线F1沿直线xm翻折得到抛物线F2,且直线l与抛物线F2有且只有一个交点,求m的值2023年湖南省岳阳市三县六区联考中考数学一模试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,满分24分,在每道小题给出的四个选项中,选出符合要求的一项)1(3分)6的相反数是()ABC6D6【答案】D【分析】根据只有符号不同的两个数叫做互为相反数解答【解答】解:6的相反数是6故选:D2(3分)一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是()ABCD【答案】A【分析
10、】找到从上面看所得到的图形即可,注意看见的棱用实线表示【解答】解:从上面看,是一个矩形故选:A3(3分)下列运算正确的是()Aa2a3a6B3a2a1C(2a2)38a6Da6a2a3【答案】C【分析】选项A根据同底数幂的乘法法则判断即可,同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;选项B根据合并同类项法则判断即可,合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;选项C根据积的乘方运算法则判断即可,积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;选项D根据同底数幂的除法法则判断即可,同底数幂的除法法则:底数不变,指数相减【解答】解:Aa2a3a5,
11、故本选项不合题意;B3a2aa,故本选项不合题意;C(2a2)38a6,故本选项符合题意;Da6a2a4,故本选项不合题意;故选:C4(3分)从班上13名排球队员中,挑选7名个头高的参加校排球比赛若这13名队员的身高各不相同,其中队员小明想知道自己能否入选,只需知道这13名队员身高数据的()A平均数B中位数C最大值D方差【答案】B【分析】由于共有13名排球队员,挑选7名个头高的参加校排球比赛,故应考虑中位数的大小【解答】解:共有13名排球队员,挑选7名个头高的参加校排球比赛,所以小明需要知道自己是否入选我们把所有同学的身高按大小顺序排列,第7名学生的身高是这组数据的中位数,所以小明知道这组数据
12、的中位数,才能知道自己是否入选故选:B5(3分)如图,直线ab,直线c分别交a,b于点A,C,点B在直线b上,ABAC,若1130,则2的度数是()A30B40C50D70【答案】B【分析】首先利用平行线的性质得到1DAC,然后利用ABAC得到BAC90,最后利用角的和差关系求解【解答】解:如图所示,直线ab,1DAC,1130,DAC130,又ABAC,BAC90,2DACBAC1309040故选:B6(3分)下列命题是真命题的是()A五边形的外角和是540B有一个角是60的三角形是等边三角形C角平分线上的点到角两边的距离相等D三角形的外心是三条高的交点【答案】C【分析】根据多边形外角和定理
13、、等边三角形的判定、角平分线性质、外心定理依次判断即可【解答】解:A、五边形的外角和是360,所以A为假命题;B、有一个角是60的等腰三角形是等边三角形,所以B为假命题;C、角平分线上的点到角两边的距离相等正确,所以C为真命题;D、三角形的外心是三边的垂直平分线的交点,所以D为假命题故选:C7(3分)孙子算经是我国古代经典数学名著,其中有一道“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足问鸡兔各几何?”学了方程(组)后,我们可以非常顺捷地解决这个问题在这个问题中,鸡的数量为()A23B24C12D13【答案】A【分析】设鸡有x只,兔有y只,根据“上有三十五头,下有九十四足”,可得
14、出关于x,y的二元一次方程组,解之即可得出结论【解答】解:设鸡有x只,兔有y只,根据题意得:,解得:鸡有23只故选:A8(3分)若将抛物线F:yx22mx+m22图象位于y轴右侧的部分沿着直线l:ym22翻折,其余部分保持不变,组成新图形H,点M(m+2,y1),N(m2,y2)为图形H上两点,若y1y2,则m的取值范围是()A2m0或0m2BmC2m2Dm2或m2【答案】C【分析】求得抛物线F:yx22mx+m22的对称轴为xm,与y轴交点为(0,m22),分当m0时,即对称轴在y轴左侧;当m0时,即对称轴为y轴;当m0时,即对称轴在y轴右侧时,进行讨论即可求解【解答】解:抛物线F:yx22
15、mx+m22的对称轴为xm,与y轴交点为 B(0,m22),B(0,m22)关于对称轴xm的对称点为A(2m,m22),AB2m,当m0时,即对称轴在y轴左侧,如图:点M(m+2,y1),N(m2,y2)为图形H上两点,且y1y2,M(m+2,y1)位于直线ym22下方,N(m2,y2)位于直线ym22上方,MN的水平距离大于AB2m,(m+2)(m2)2m,解得:m2;当m0时,即对称轴为y轴,如图:点M(m+2,y1),N(m2,y2)为图形H上两点,y1y2恒成立,当m0时,即对称轴在y轴右侧,如图:与y轴交点为:A(0,m22),A(0,m22)关于对称轴xm的对称点为B(2m,m22
16、),AB2m,点M(m+2,y1),N(m2,y2)为图形H上两点,且y1y2,M(m+2,y1)位于直线ym22下方,N(m2,y2)位于直位于直线ym22上方,MN的水平距离大于AB2m,(m+2)(m2)2m,解得:m2;综上所述:2m2;故选:C二、填空题(本大题共8小题,每小题4分,满分32分)9(4分)代数式有意义时,x应满足的条件为 x1【答案】见试题解答内容【分析】根据二次根式和分式有意义的条件可得x+10,再解即可【解答】解:由题意得:x+10,解得:x1,故答案为:x110(4分)已知m,n同时满足2m+n3与2mn1,则4m2n2的值是 3【答案】3【分析】观察已知和所求
17、可知,4m2n2(2m+n)(2mn),将代数式的值代入即可得出结论【解答】解:2m+n3,2mn1,4m2n2(2m+n)(2mn)313故答案为:311(4分)如图,在ABC中,按以下步骤作图:分别以 A、B为圆心,大于AB的长为半径画弧,相交于两点M,N;作直线MN交AC于点D,连接BD若AC12cm,边BC7cm,则BCD的周长为 19cm【答案】19【分析】由尺规作图可知,直线MN为线段AB的垂直平分线,即可得ADBD,则BCD的周长可转化为BC+AC,即可得出答案【解答】解:由尺规作图可知,直线MN为线段AB的垂直平分线,ADBD,AC12cm,BC7cm,BCD的周长为BC+BD
18、+CDBC+AD+CDBC+AC19cm故答案为:1912(4分)已知x1,x2是一元二次方程x2x20220的两根,则x1+x2x1x22023【答案】2023【分析】根据一元二次方程根与系数的关系得到:x1+x21,x1x22022,然后代入求值即可求解【解答】解:x1,x2是一元二次方程x2x20220的两根,x1+x21,x1x22022,x1+x2x1x21(2022)2023故答案为:202313(4分)仔细观察下列三组数:第一组:1,4,9,16,25,;第二组:1,8,27,64,125,;第三组:2,8,18,32,50,;取每组数的第n个数,则这三个数的和为 n3n2【答案
19、】n3n2【分析】由题意得出每组数的第n个数,再求这三个数的和即可【解答】解:取每组数的第n个数分别为:n2,n3,2n2,n2+n32n2n3n2,故答案为:n3n214(4分)如图,从一个大正方形中截去面积为4cm2和9cm2的两个小正方形,若随机向大正方形内投一粒米,则米粒落在图中阴影部分的概率为 【答案】【分析】由两个小正方形面积可推出最大正方形的边长及面积,从而可求阴影部分的面积,根据米粒落在图中阴影部分的概率为阴影部分与大正方形面积比即可得到答案【解答】解:由图可知大正方形中的两个小正方形边长分别为2cm、3cm,大正方形的边长为3+25(cm),则大正方形的面积为5225(cm2
20、),阴影部分的面积为254912(cm2),则米粒落在图中阴影部分的概率为故答案为:15(4分)如图,为了测量河对岸A,B两点间的距离,数学兴趣小组在河岸南侧选定观测点C,测得A,B均在C的北偏东37方向上,沿正东方向行走90米至观测点D,测得A在D的正北方向,B在D的北偏西53方向上则A,B两点间的距离为 96米(参考数据:sin370.60,cos370.80,tan370.75)【答案】96【分析】根据题意可得:CD90米,ADCD,ECAD,从而可得AACE37,进而可得ABD90,然后在RtACD中,利用锐角三角函数的定义求出AD的长,再在RtABD中,利用锐角三角函数的定义求出AB
21、的长,即可解答【解答】解:由题意得:CD90米,ADCD,ECAD,AACE37,BDF53,ABD180ABDF90,在RtACD中,AD120(米),在RtABD中,ABADcos371200.896(米),A,B两点间的距离约为96米,故答案为:9616(4分)如图,在O中,AB为直径,AB10,点C为O上一点,BAC的平分线AD交BC于点E、交O于点D,连接BD(1)若BAC50,则的长为 (结果保留);(2)若DE:AE1:8,则EC【答案】(1);(2)【分析】(1)连接OC,根据圆周角定理及弧长公式计算可得答案;(2)连接OD交BC于F,由圆周角定理得OFAC,然后根据相似三角形
22、的判定与性质可得答案【解答】解:(1)连接OC,AB为直径,BCA90,BAC50,ABC40,AOC2ABC80,的长为:,故答案为:;(2)连接OD交BC于F,AD平分BAC,BADCAD,ODBC且BFCF,OF为ABC的中位线,OFAC,DFEACE90,FEDAEC,DEFAEC,设DFx,则AC8x,故OF,OF5x,5x4x,x1,即DF1,OF4,OBOC5,OE4,BFCF3,故答案为:三、解答题(本大题共8小题,满分64分,解答应写出文字说明,证明过程或演算步骤)17(6分)计算:(1)0+4sin45+|3|【答案】4【分析】直接利用零指数幂的性质以及特殊角的三角函数值、
23、二次根式的性质、绝对值的性质分别化简,进而合并得出答案【解答】解:原式1+42+31+22+3418(6分)已知6x24x30,求(x1)2+x(x+)的值【答案】2【分析】利用完全平方公式、单项式乘多项式的运算法则把原式化简,整体代入计算,得到答案【解答】解:原式x22x+1+x2+x2x2x+1,6x24x30,6x24x3,2x2x1,2x2x+1219(8分)如图,在ABC中,BAC90,直线l经过点A,过点 B、C分别作l的垂线,垂足分别为点D、E有以下三个条件:ADCE;BCl;ABC45请从中选择一个合适的作为已知条件,使DEDB+EC(1)你添加的条件是 (答案不唯一)(填写序
24、号);(2)添加了条件后,请证明DEDB+EC【答案】(1)添加的条件是(答案不唯一);(2)证明过程见解答【分析】(1)根据题意添加即可;(2)利用AAS证明BADACE,可得DBEA,然后根据线段的和差即可解决问题【解答】(1)解:添加的条件是(答案不唯一);(2)证明:BDl,CEl,BDAAEC90,DBA+DAB90,BAC90,DAB+CAE90,DBACAE,又ADCE,BADACE(AAS),DBEA,DEEA+ADDB+EC20(8分)学校举行“爱我中华,朗诵经典”班级朗诵比赛,李老师收集了所有参赛班级的成绩后,把成绩x(满分100分)分成四个等级(A:90x100,B:80
25、x90,C:70x80,D:60x70)进行统计,并绘制成如图不完整的条形统计图和扇形统计图根据信息作答:(1)参赛班级总数有 40个;m30;(2)补全条形统计图;(3)D所对应扇形圆心角的大小为 36;(4)统计发现D等级中七年级、八年级各有两个班,为了提高D等级班级的朗诵水平,语文组老师计划从D等级班级中任选两个班进行首轮培训,求选中两个班恰好是同一个年级的概率(用画树状图或列表法把所有可能结果表示出来)【答案】(1)40,30;(2)图形见解析;(3)36;(4)【分析】(1)由A的个数除以所占百分比得出参赛班级总数,即可解决问题;(2)由(1)的结果补全条形统计图即可;(3)由360
26、乘以D所占的比例即可;(4)画树状图,共有12种等可能的结果,其中选中两个班恰好是同一个年级的结果有4种,再由概率公式求解即可【解答】解:(1)从两个统计图中可知,成绩在“A等级”的有8个,占调查班级的20%,820%40(个),成绩在“C”的班级个数为:40816412(个),成绩在“C”的班级所占的百分比为:124030%,m30,故答案为:40,30;(2)补全条形统计图如下:(3)D所对应扇形圆心角的大小为:36036,故答案为:36;(4)把D等级的七年级2个班分别记为A、B,八年级2个班分别记为C、D,画树状图如下:共有12种等可能的结果,其中选中两个班恰好是同一个年级的结果有4种
27、,选中两个班恰好是同一个年级的概率为21(8分)如图,已知正比例函数y1x的图象与反比例函数y2的图象相交于点A(3,n)和点 B(1)求n和k的值;(2)请结合函数图象,直接写出不等式x0的解集;(3)如图,以AO为边作菱形AOCD,使点C在x轴正半轴上,点D在第一象限,双曲线交CD于点E,连接AE、OE,求AOE的面积【答案】(1)n4,k12;(2)x3或0x3;(3)10【分析】(1)先把点A(3,n)代入正比例函数解析式求出n的值,再把求出的点A坐标代入反比例函数解析式即可求出k值;(2)根据正比例函数和反比例函数都是关于原点成中心对称的,可得出点B的坐标,然后根据图象即可写出解集;
28、(3)根据题意作出辅助线,然后求出OA的长,根据菱形的性质求出OC的长,可推出,然后求出菱形的面积即可求出AOE的面积【解答】解:(1)把点A(3,n)代入正比例函数可得:n4,点A(3,4),把点A(3,4)代入反比例函数,可得:k12;(2)点A与点B是关于原点对称的,点B(3,4),根据图象可得,不等式x0的解集为:x3或0x3;(3)如图所示,过点A作AGx轴,垂足为G,A(3,4),OG3,AG4在RtAOG中,AO5四边形AOCD是菱形,OCOA5,22(8分)六一儿童节来临之际,某商店用3000元购进一批玩具,很快售完;第二次购进时,每件的进价提高了20%,同样用3000元购进的
29、数量比第一次少了10件(1)求第一次每件的进价为多少元?(2)若两次购进的玩具售价相同,且全部售完后利润不低于1700元,则售价至少定为多少元?【答案】(1)第一次每件的进价为50元;(2)两次的售价均为70元【分析】(1)设第一次每件的进价为x元,则第二次进价为(1+20%)x,根据等量关系,列出分式方程,即可求解;(2)根据总利润总售价总成本,列出算式,即可求解【解答】解:(1)设第一次每件的进价为x元,则第二次进价为(1+20%)x,根据题意得:,解得:x50,经检验:x50是方程的解,且符合题意,答:第一次每件的进价为50元;(2)设两次的售价为x元,x()300021700,x70,
30、答:两次的售价至少为70元23(10分)【问题情境】(1)如图,在矩形ABCD中,点 E、F分别在边CD、AD上,且AEBF于点G求证:【变式思考】(2)如图,在(1)的条件下,连接CG,若CGCB,求证:点E是DC的中点;【深入探究】(3)如图,在矩形ABCD中,点 E、F、H分别在边CD、AD、BC上,且AEHF于点G,连接CG,设HCG2,且sin,若CGCH,m,求的值(用含m的代数式表示)【答案】(1)见解析;(2)见解析;(3)【分析】(1)根据两个角相等,两个三角形相似可得ABFDAE,则;(2)过点C作CPBG于点P,说明DAEPCB,得,由GBAPCB,得,进而解决问题;(3
31、)过点C作CQHG于点Q,设HQx,由sin,得CHx,CQ3x,利用含x的代数式表示DE和HG的长即可【解答】(1)证明:如图中,四边形ABCD是矩形,BADD90,ABF+BFA90,又AEBF,DAE+BFA90,ABFDAE,ABFDAE,;(2)证明:过点C作CPBG于点P,3+CBP90,又四边形ABCD是矩形,2+CBP90,23,21,123,DBGACPB90,DAEGBAPCB,DAEPCB,CPBG,CBCG,PBBG,GBAPCB,ADBC,DE,点E是DC的中点;(3)解:过点C作CQHG于点Q,又AEHF,AGFCQH90,又矩形ABCD中,ADBC,34,12,C
32、QHG,CGCH,HCG2,2GCH,设HQx,sin,CHx,CQ3x,BHmx,BC(m+1)x,AD(m+1)x,12,DEAD,HQx,CQHG,CGCH,GH2x,24(10分)如图,在平面直角坐标系xOy中,抛物线F1:yx2+bx+c经过点A(1,0)和点B(3,0),与y轴交于点C,经过点A的直线l与y轴的负半轴交于点D,与抛物线F1交于点E,且ODOA(1)求抛物线F1的解析式;(2)如图,点P是抛物线F1上位于x轴下方的一动点,连接CP、EP,CP与直线l交于点Q,设EPQ和ECQ的面积为S1和S2,求的最大值;(3)如图,将抛物线F1沿直线xm翻折得到抛物线F2,且直线l
33、与抛物线F2有且只有一个交点,求m的值【答案】(1)yx24x+3;(2)的最大值为;(3)m【分析】(1)将点A(1,0)和点B(3,0)代入yx2+bx+c,解方程组即可得到结论;(2)设直线l的解析式为ykx+n,解方程组得到直线l的解析式为yx1,过点P作PMx轴,交AE于点M,根据相似三角形的性质得到CD4,设P(a,a24a+3),则M(a,a1),根据二次函数的性质即可得到结论;(3)将抛物线F1 沿直线xm翻折得到抛物线F2:yx2(4m4)x+4m28m+3,得到方程x2(4m3)x+4m28m+40,根据根的判别式列方程即可得到结论【解答】解:(1)将点A(1,0)和点B(
34、3,0)代入yx2+bx+c,得,解得,抛物线F1的解析式为yx24x+3;(2)ODOA,则D(0,1),又A(1,0),设直线l的解析式为ykx+n,解得:,直线l的解析式为yx1,过点P作PMx轴,交AE于点M,则PMCD,MPQDCQ,又,又C(0,3),D(0,1),CD4,设P(a,a24a+3),则M(a,a1),PMa1a2+4a3(a)2+,PM的最大值为,则的最大值为,的最大值为;(3)将抛物线F1 沿直线xm翻折得到抛物线F2:yx2(4m4)x+4m28m+3,当x2(4m4)x+4m28m+3x1时,即x2(4m3)x+4m28m+40,(4m3)24(4m28m+4)8m7,又直线l与抛物线F2有且只有一个交点,8m70,解得m第33页(共33页)