《专题09平面直角坐标系与函数基础知识-备战2024年中考数学必刷真题考点分类专练(全国通用)含解析.docx》由会员分享,可在线阅读,更多相关《专题09平面直角坐标系与函数基础知识-备战2024年中考数学必刷真题考点分类专练(全国通用)含解析.docx(57页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、备战2024年中考数学必刷真题考点分类专练(全国通用)专题09平面直角坐标系与函数基础知识一选择题(共11小题)1(2022连云港)函数y中自变量x的取值范围是()Ax1Bx0Cx0Dx12(2022扬州)在平面直角坐标系中,点P(3,a2+1)所在象限是()A第一象限B第二象限C第三象限D第四象限3(2022乐山)点P(1,2)在()A第一象限B第二象限C第三象限D第四象限4(2022槐荫区一模)以直角坐标系的原点O为圆心,以1为半径作圆若点P是该圆上第一象限内的一点,且OP与x轴正方向组成的角为,则点P的坐标为()A(cos,1)B(1,sin)C(sin,cos)D(cos,sin)5(
2、2022重庆)如图,曲线表示一只蝴蝶在飞行过程中离地面的高度h(m)随飞行时间t(s)的变化情况,则这只蝴蝶飞行的最高高度约为()A5mB7mC10mD13m6(2022安徽)甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算,走得最快的是()A甲B乙C丙D丁7(2022台州)吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m,600m他从家出发匀速步行8min到公园后,停留4min,然后匀速步行6min到学校设吴老师离公园的距离为y(单位:m),所用时间为x(单位:min),则下列表示y与x之间函数关系的图象中,正确的是()ABCD8(2022武
3、汉)匀速地向一个容器内注水,最后把容器注满在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线)这个容器的形状可能是()ABCD9(2022衡阳)如图,在四边形ABCD中,B90,AC6,ABCD,AC平分DAB设ABx,ADy,则y关于x的函数关系用图象大致可以表示为()ABCD10(2022江西)甲、乙两种物质的溶解度y(g)与温度t()之间的对应关系如图所示,则下列说法中,错误的是()A甲、乙两种物质的溶解度均随着温度的升高而增大B当温度升高至t2时,甲的溶解度比乙的溶解度大C当温度为0时,甲、乙的溶解度都小于20gD当温度为30时,甲、乙的溶解度相等11(2022温
4、州)小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s米,所经过的时间为t分钟下列选项中的图象,能近似刻画s与t之间关系的是()ABCD二填空题(共3小题)12(2022眉山)将一组数,2,2,4,按下列方式进行排列:,2,2;,2,4;若2的位置记为(1,2),的位置记为(2,3),则2的位置记为 13(2022娄底)函数y的自变量x的取值范围是 14(2022孝感)如图1,在ABC中,B36,动点P从点A出发,沿折线ABC匀速运动至点C停止若点P的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示当AP恰好平分BAC时t的值为 三解
5、答题(共1小题)15(2022舟山)6月13日,某港口的湖水高度y(cm)和时间x(h)的部分数据及函数图象如下:x(h)1112131415161718y(cm)18913710380101133202260(数据来自某海洋研究所)(1)数学活动:根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象观察函数图象,当x4时,y的值为多少?当y的值最大时,x的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论(3)数学应用:根据研究,当潮水高度超过260cm时,货轮能够安全进出该港口请问当天什么时间段适合货轮进出此港口?备战2024年中考数学必刷真题考点分类专练(全国
6、通用)专题09平面直角坐标系与函数基础知识一选择题(共11小题)1(2022连云港)函数y中自变量x的取值范围是()Ax1Bx0Cx0Dx1【分析】根据二次根式的被开方数是非负数即可得出答案【解析】x10,x1故选:A【点评】本题考查了函数自变量的取值范围,掌握二次根式的被开方数是非负数是解题的关键2(2022扬州)在平面直角坐标系中,点P(3,a2+1)所在象限是()A第一象限B第二象限C第三象限D第四象限【分析】根据平方数非负数判断出点P的纵坐标是正数,再根据各象限内点的坐标特征解答【解析】a20,a2+11,点P(3,a2+1)所在的象限是第二象限故选:B【点评】本题考查了各象限内点的坐
7、标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(,+);第三象限(,);第四象限(+,)3(2022乐山)点P(1,2)在()A第一象限B第二象限C第三象限D第四象限【分析】根据各象限内点的坐标符号直接判断的判断即可【解析】P(1,2),横坐标为1,纵坐标为:2,P点在第二象限故选:B【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握其特点是解题关键4(2022槐荫区一模)以直角坐标系的原点O为圆心,以1为半径作圆若点P是该圆上第一象限内的一点,且OP与x轴正方向组成的角为,则点P的坐标为()A(cos,1
8、)B(1,sin)C(sin,cos)D(cos,sin)【分析】作PAx轴于点A那么OA是的邻边,是点P的横坐标,为cos;PA是的对边,是点P的纵坐标,为sin【解析】作PAx轴于点A,则POA,sin,PAOPsin,cos,OAOPcosOP1,PAsin,OAcosP点的坐标为(cos,sin)故选:D【点评】解决本题的关键是得到点P的横纵坐标与相应的函数和半径之间的关系5(2022重庆)如图,曲线表示一只蝴蝶在飞行过程中离地面的高度h(m)随飞行时间t(s)的变化情况,则这只蝴蝶飞行的最高高度约为()A5mB7mC10mD13m【分析】根据函数的图象的最高点对应的函数值即可得出答案
9、【解析】观察图象,当t3时,h13,这只蝴蝶飞行的最高高度约为13m,故选:D【点评】本题考查了函数的图象,掌握函数的图象的最高点对应的函数值即为这只蝴蝶飞行的最高高度是解题的关键6(2022安徽)甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算,走得最快的是()A甲B乙C丙D丁【分析】当时间一样的时候,分别比较甲、乙和丙、丁的平均速度;当路程都是3千米的时候,比较甲、丁的平均速度即可得出答案【解析】30分钟甲比乙步行的路程多,50分钟丁比丙步行的路程多,甲的平均速度乙的平均速度,丁的平均速度丙的平均速度,步行3千米时,甲比丁用的时间少,甲的平均速度丁的平均速度,走的最快的是
10、甲,故选:A【点评】本题考查了函数的图象,通过控制变量法比较平均速度的大小是解题的关键7(2022台州)吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m,600m他从家出发匀速步行8min到公园后,停留4min,然后匀速步行6min到学校设吴老师离公园的距离为y(单位:m),所用时间为x(单位:min),则下列表示y与x之间函数关系的图象中,正确的是()ABCD【分析】在不同时间段中,找出y的值,即可求解【解析】吴老师从家出发匀速步行8min到公园,则y的值由400变为0,吴老师在公园停留4min,则y的值仍然为0,吴老师从公园匀速步行6min到学校,则在18分
11、钟时,y的值为600,故选:C【点评】本题考查了函数的图象,利用数形结合思想解决问题是解题的关键8(2022武汉)匀速地向一个容器内注水,最后把容器注满在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线)这个容器的形状可能是()ABCD【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断【解析】注水量一定,函数图象的走势是稍陡,平缓,陡;那么速度就相应的变化,跟所给容器的粗细有关则相应的排列顺序就为选项D故选:D【点评】此题考查函数图象的应用,需注意容器粗细和水面高度变化的关联9(2022衡阳)如图,在四边形ABCD中,B90,AC6
12、,ABCD,AC平分DAB设ABx,ADy,则y关于x的函数关系用图象大致可以表示为()ABCD【分析】先证明CDADy,过D点作DEAC于点E,证明ABCAED,利用相似三角形的性质可得函数关系式,从而可得答案【解析】过D点作DEAC于点EABCD,ACDBAC,AC平分DAB,BACCAD,ACDCAD,则CDADy,即ACD为等腰三角形,则DE垂直平分AC,AECEAC3,AED90,BACCAD,BAED90,ABCAED,y,在ABC中,ABAC,x6,故选:D【点评】本题考查的是角平分线的定义,等腰三角形的判定与性质,相似三角形的判定与性质,反比例函数的图象,通过添加辅助线证明AB
13、CAED是解本题的关键10(2022江西)甲、乙两种物质的溶解度y(g)与温度t()之间的对应关系如图所示,则下列说法中,错误的是()A甲、乙两种物质的溶解度均随着温度的升高而增大B当温度升高至t2时,甲的溶解度比乙的溶解度大C当温度为0时,甲、乙的溶解度都小于20gD当温度为30时,甲、乙的溶解度相等【分析】利用函数图象的意义可得答案【解析】由图象可知,A、B、C都正确,当温度为t1时,甲、乙的溶解度都为30g,故D错误,故选:D【点评】本题主要考查了函数的图象,熟练掌握横纵坐标表示的意义是解题的关键11(2022温州)小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s米,所经过的时
14、间为t分钟下列选项中的图象,能近似刻画s与t之间关系的是()ABCD【分析】根据函数图象可知,小聪从家出发,则图象从原点开始,在1020分钟休息可解答【解析】由题意可知:小聪某次从家出发,s米表示他离家的路程,所以C,D错误;小聪在凉亭休息10分钟,所以A正确,B错误故选:A【点评】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键二填空题(共3小题)12(2022眉山)将一组数,2,2,4,按下列方式进行排列:,2,2;,2,4;若2的位置记为(1,2),的位置记为(2,3),则2的位置记为 (4,2)【分析】先找出被开方数的规律,然后再求得的位置即可【解析】题中数字可
15、以化成:,;,;规律为:被开数为从2开始的偶数,每一行4个数,28是第14个偶数,而14432,的位置记为(4,2),故答案为:(4,2)【点评】本题考查了类比点的坐标解决实际问题的能力和阅读理解能力,把被开方数全部统一成二次根式的形式是解题的关键13(2022娄底)函数y的自变量x的取值范围是 x1【分析】根据(a0),以及分母不能为0,可得x10,然后进行计算即可解答【解析】由题意得:x10,解得:x1,故答案为:x1【点评】本题考查了函数自变量的取值范围,熟练掌握(a0),以及分母不能为0是解题的关键14(2022孝感)如图1,在ABC中,B36,动点P从点A出发,沿折线ABC匀速运动至
16、点C停止若点P的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示当AP恰好平分BAC时t的值为 2+2【分析】由图象可得ABBC4cm,通过证明APCBAC,可求AP的长,即可求解【解析】如图,连接AP,由图2可得ABBC4cm,B36,ABBC,BACC72,AP平分BAC,BAPPACB36,APBP,APC72C,APACBP,PACB,CC,APCBAC,AP2ABPC4(4AP),AP22BP,(负值舍去),t2+2,故答案为:2+2【点评】本题是动点问题的函数图象,考查了等腰三角形的性质,相似三角形的判定和性质,证明三角形相似是解
17、题的关键三解答题(共1小题)15(2022舟山)6月13日,某港口的湖水高度y(cm)和时间x(h)的部分数据及函数图象如下:x(h)1112131415161718y(cm)18913710380101133202260(数据来自某海洋研究所)(1)数学活动:根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象观察函数图象,当x4时,y的值为多少?当y的值最大时,x的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论(3)数学应用:根据研究,当潮水高度超过260cm时,货轮能够安全进出该港口请问当天什么时间段适合货轮进出此港口?【分析】(1)先描点,然后画出函数图
18、象;利用数形结合思想分析求解;(2)结合函数图象增减性及最值进行分析说明;(3)结合函数图象确定关键点,从而求得取值范围【解析】(1)如图:通过观察函数图象,当x4时,y200,当y值最大时,x21;(2)该函数的两条性质如下(答案不唯一):当2x7时,y随x的增大而增大;当x14时,y有最小值为80;(3)由图象,当y260时,x5或x10或x18或x23,当5x10或18x23时,y260,即当5x10或18x23时,货轮进出此港口【点评】本题考查函数的图象,理解题意,准确识图,利用数形结合思想确定关键点是解题关键备战2024年中考数学必刷真题考点分类专练(全国通用)专题10一次函数一选择
19、题(共10小题)1(2022娄底)将直线y2x+1向上平移2个单位,相当于()A向左平移2个单位B向左平移1个单位C向右平移2个单位D向右平移1个单位2(2022陕西)在同一平面直角坐标系中,直线yx+4与y2x+m相交于点P(3,n),则关于x,y的方程组的解为()ABCD3(2022陕西)在同一平面直角坐标系中,直线yx+4与y2x+m相交于点P(3,n),则关于x,y的方程组的解为()ABCD4(2022株洲)在平面直角坐标系中,一次函数y5x+1的图象与y轴的交点的坐标为()A(0,1)B(,0)C(,0)D(0,1)5(2022安徽)在同一平面直角坐标系中,一次函数yax+a2与ya
20、2x+a的图象可能是()ABCD6(2022凉山州)一次函数y3x+b(b0)的图象一定不经过()A第一象限B第二象限C第三象限D第四象限7(2022眉山)一次函数y(2m1)x+2的值随x的增大而增大,则点P(m,m)所在象限为()A第一象限B第二象限C第三象限D第四象限8(2022邵阳)在直角坐标系中,已知点A(,m),点B(,n)是直线ykx+b(k0)上的两点,则m,n的大小关系是()AmnBmnCmnDmn9(2022乐山)甲、乙两位同学放学后走路回家,他们走过的路程s(千米)与所用的时间t(分钟)之间的函数关系如图所示根据图中信息,下列说法错误的是()A前10分钟,甲比乙的速度慢B
21、经过20分钟,甲、乙都走了1.6千米C甲的平均速度为0.08千米/分钟D经过30分钟,甲比乙走过的路程少10(2022绍兴)已知(x1,y1),(x2,y2),(x3,y3)为直线y2x+3上的三个点,且x1x2x3,则以下判断正确的是()A若x1x20,则y1y30B若x1x30,则y1y20C若x2x30,则y1y30D若x2x30,则y1y20二填空题(共8小题)11(2022湘潭)请写出一个y随x增大而增大的一次函数表达式 12(2022天津)若一次函数yx+b(b是常数)的图象经过第一、二、三象限,则b的值可以是 (写出一个即可)13(2022宿迁)甲、乙两位同学各给出某函数的一个特
22、征,甲:“函数值y随自变量x增大而减小”;乙:“函数图象经过点(0,2)”,请你写出一个同时满足这两个特征的函数,其表达式是 14(2022扬州)如图,函数ykx+b(k0)的图象经过点P,则关于x的不等式kx+b3的解集为 15(2022杭州)已知一次函数y3x1与ykx(k是常数,k0)的图象的交点坐标是(1,2),则方程组的解是 16(2022武威)若一次函数ykx2的函数值y随着自变量x值的增大而增大,则k (写出一个满足条件的值)17(2022德阳)如图,已知点A(2,3),B(2,1),直线ykx+k经过点P(1,0)试探究:直线与线段AB有交点时k的变化情况,猜想k的取值范围是
23、18(2022苏州)一个装有进水管和出水管的容器,开始时,先打开进水管注水,3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完在整个过程中,容器中的水量y(升)与时间x(分钟)之间的函数关系如图所示,则图中a的值为 三解答题(共12小题)19(2022天津)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境已知学生公寓、阅览室、超市依次在同一条直线上,阅览室离学生公寓1.2km,超市离学生公寓2km小琪从学生公寓出发,匀速步行了12min到阅览室;在阅览室停留70min后,匀速步行了10min到超市;在超市停留20min后,匀速骑行了8min返回学生公寓给出的图
24、象反映了这个过程中小琪离学生公寓的距离ykm与离开学生公寓的时间xmin之间的对应关系请根据相关信息,解答下列问题:()填表:离开学生公寓的时间/min585087112离学生公寓的距离/km0.5 1.6 ()填空:阅览室到超市的距离为 km;小琪从超市返回学生公寓的速度为 km/min;当小琪离学生公寓的距离为1km时,他离开学生公寓的时间为 min()当0x92时,请直接写出y关于x的函数解析式20(2022苏州)某水果店经销甲、乙两种水果,两次购进水果的情况如表所示:进货批次甲种水果质量(单位:千克)乙种水果质量(单位:千克)总费用(单位:元)第一次60401520第二次3050136
25、0(1)求甲、乙两种水果的进价;(2)销售完前两次购进的水果后,该水果店决定回馈顾客,开展促销活动第三次购进甲、乙两种水果共200千克,且投入的资金不超过3360元将其中的m千克甲种水果和3m千克乙种水果按进价销售,剩余的甲种水果以每千克17元、乙种水果以每千克30元的价格销售若第三次购进的200千克水果全部售出后,获得的最大利润不低于800元,求正整数m的最大值21(2022陕西)如图,是一个“函数求值机”的示意图,其中y是x的函数下面表格中,是通过该“函数求值机”得到的几组x与y的对应值输入x64202输出y622616根据以上信息,解答下列问题:(1)当输入的x值为1时,输出的y值为 ;
26、(2)求k,b的值;(3)当输出的y值为0时,求输入的x值22(2022新疆)A,B两地相距30km,甲、乙两人分别开车从A地出发前往B地,其中甲先出发1h如图是甲,乙行驶路程y甲(km),y乙(km)随行驶时间x(h)变化的图象,请结合图象信息,解答下列问题:(1)填空:甲的速度为 km/h;(2)分别求出y甲,y乙与x之间的函数解析式;(3)求出点C的坐标,并写出点C的实际意义23(2022衡阳)冰墩墩(BingDwenDwen)、雪容融(ShueyRhonRhon)分别是2022年北京冬奥会、冬残奥会的吉祥物冬奥会来临之际,冰墩墩、雪容融玩偶畅销全国小雅在某网店选中两种玩偶决定从该网店进
27、货并销售第一次小雅用1400元购进了冰墩墩玩偶15个和雪容融玩偶5个,已知购进1个冰墩墩玩偶和1个雪容融玩偶共需136元,销售时每个冰墩墩玩偶可获利28元,每个雪容融玩偶可获利20元(1)求两种玩偶的进货价分别是多少?(2)第二次小雅进货时,网店规定冰墩墩玩偶进货数量不得超过雪容融玩偶进货数量的1.5倍小雅计划购进两种玩偶共40个,应如何设计进货方案才能获得最大利润,最大利润是多少元?24(2022湖州)某校组织学生从学校出发,乘坐大巴前往基地进行研学活动大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时(1)求轿车出发后多少
28、小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB,AB分别表示大巴、轿车离开学校的路程s(千米)与大巴行驶的时间t(小时)的函数关系的图象试求点B的坐标和AB所在直线的解析式;(3)假设大巴出发a小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a的值25(2022绍兴)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x表示进水用时(单位:小时),y表示水位高度(单位:米)x00.511.52y11.522.53为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:ykx+b(k0),yax2+bx+c(a0),y(k0
29、)(1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象(2)当水位高度达到5米时,求进水用时x26(2022云南)某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍怎样购买,才能使总费用W最少?并求出最少费用27(2022凉山州)为全面
30、贯彻党的教育方针,严格落实教育部对中小学生“五项管理”的相关要求和关于进一步加强中小学生体质健康管理工作的通知精神,保障学生每天在校1小时体育活动时间,某班计划采购A、B两种类型的羽毛球拍已知购买3副A型羽毛球拍和4副B型羽毛球拍共需248元;购买5副A型羽毛球拍和2副B型羽毛球拍共需264元(1)求A、B两种类型羽毛球拍的单价(2)该班准备采购A、B两种类型的羽毛球拍共30副,且A型羽毛球拍的数量不少于B型羽毛球拍数量的2倍,请给出最省钱的购买方案,求出最少费用,并说明理由28(2022成都)随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民
31、的一种低碳生活新风尚甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18km/h,乙骑行的路程s(km)与骑行的时间t(h)之间的关系如图所示(1)直接写出当0t0.2和t0.2时,s与t之间的函数表达式;(2)何时乙骑行在甲的前面?29(2022丽水)因疫情防控需要,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地已知甲、乙两地的路程是330km,货车行驶时的速度是60km/h两车离甲地的路程s(km)与时间t(h)的函数图象如图(1)求出a的值;(2)求轿车离甲地的路程s(km)与时间t(h)的函数表达式;(3)问轿车比货车早多少时间到达乙地?30(20
32、22德阳)习近平总书记对实施乡村振兴战略作出重要指示强调:实施乡村振兴战略,是党的十九大作出的重大决策部署,是新时代做好“三农”工作的总抓手为了发展特色产业,红旗村花费4000元集中采购了A种树苗500株,B种树苗400株,已知B种树苗单价是A种树苗单价的1.25倍(1)求A、B两种树苗的单价分别是多少元?(2)红旗村决定再购买同样的树苗100株用于补充栽种,其中A种树苗不多于25株,在单价不变,总费用不超过480元的情况下,共有几种购买方案?哪种方案费用最低?最低费用是多少元?备战2024年中考数学必刷真题考点分类专练(全国通用)专题10一次函数一选择题(共10小题)1(2022娄底)将直线
33、y2x+1向上平移2个单位,相当于()A向左平移2个单位B向左平移1个单位C向右平移2个单位D向右平移1个单位【分析】根据直线ykx+b平移k值不变,只有b发生改变解答即可【解析】将直线y2x+1向上平移2个单位后得到新直线解析式为:y2x+1+2,即y2x+3由于y2x+32(x+1)+1,所以将直线y2x+1向左平移1个单位即可得到直线y2x+3所以将直线y2x+1向上平移2个单位,相当于将直线y2x+1向左平移1个单位故选:B【点评】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键2(2022陕西)在同一平面直角坐标系中,直线yx+4与y2x+m相交于点P(3
34、,n),则关于x,y的方程组的解为()ABCD【分析】先将点P(3,n)代入yx+4,求出n,即可确定方程组的解【解析】将点P(3,n)代入yx+4,得n3+41,P(3,1),原方程组的解为,故选:B【点评】本题考查了一次函数与二元一次方程组的关系,求出两直线的交点坐标是解题的关键3(2022陕西)在同一平面直角坐标系中,直线yx+4与y2x+m相交于点P(3,n),则关于x,y的方程组的解为()ABCD【分析】先将点P代入yx+4,求出n,即可确定方程组的解【解析】将点P(3,n)代入yx+4,得n3+41,P(3,1),关于x,y的方程组的解为,故选:C【点评】本题考查了一次函数与二元一
35、次方程组的关系,求出两直线的交点坐标是解题的关键4(2022株洲)在平面直角坐标系中,一次函数y5x+1的图象与y轴的交点的坐标为()A(0,1)B(,0)C(,0)D(0,1)【分析】一次函数的图象与y轴的交点的横坐标是0,当x0时,y1,从而得出答案【解析】当x0时,y1,一次函数y5x+1的图象与y轴的交点的坐标为(0,1),故选:D【点评】本题考查了一次函数图象上点的坐标特征,掌握一次函数的图象与y轴的交点的横坐标是0是解题的关键5(2022安徽)在同一平面直角坐标系中,一次函数yax+a2与ya2x+a的图象可能是()ABCD【分析】利用一次函数的性质进行判断【解析】yax+a2与y
36、a2x+a,x1时,两函数的值都是a2+a,两直线的交点的横坐标为1,若a0,则一次函数yax+a2与ya2x+a都是增函数,且都交y轴的正半轴;若a0,则一次函数yax+a2是减函数,交y轴的正半轴,ya2x+a是增函数,交y轴的负半轴,且两直线的交点的横坐标为1;故选:D【点评】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题一次函数ykx+b的图象有四种情况:当k0,b0,函数ykx+b的图象经过第一、二、三象限;当k0,b0,函数ykx+b的图象经过第一、三、四象限;当k0,b0时,函数ykx+b的图象经过第一、二、四象限;当k0,b0时,函数ykx+b的图象经过第二、三、
37、四象限6(2022凉山州)一次函数y3x+b(b0)的图象一定不经过()A第一象限B第二象限C第三象限D第四象限【分析】根据一次函数的图象与系数的关系即可得出结论【解析】函数y3x+b(b0)中,k30,b0,当b0时,此函数的图象经过一、三象限,不经过第四象限;当b0时,此函数的图象经过一、二、三象限,不经过第四象限则一定不经过第四象限故选:D【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数ykx+b(k0)中,函数的图象所在的象限是解答此题的关键7(2022眉山)一次函数y(2m1)x+2的值随x的增大而增大,则点P(m,m)所在象限为()A第一象限B第二象限C第三象限D第四象
38、限【分析】根据一次函数的性质求出m的范围,再根据每个象限点的坐标特征判断P点所处的象限即可【解析】一次函数y(2m1)x+2的值随x的增大而增大,2m10,解得:m,P(m,m)在第二象限,故选:B【点评】本题考查了一次函数的性质和各个象限坐标特点,能熟记一次函数的性质是解此题的关键8(2022邵阳)在直角坐标系中,已知点A(,m),点B(,n)是直线ykx+b(k0)上的两点,则m,n的大小关系是()AmnBmnCmnDmn【分析】根据k0可知函数y随着x增大而减小,再根即可比较m和n的大小【解析】点A(,m),点B(,n)是直线ykx+b上的两点,且k0,一次函数y随着x增大而减小,mn,
39、故选:A【点评】本题考查了一次函数图象上点的坐标特征,熟练掌握一次函数的增减性是解题的关键9(2022乐山)甲、乙两位同学放学后走路回家,他们走过的路程s(千米)与所用的时间t(分钟)之间的函数关系如图所示根据图中信息,下列说法错误的是()A前10分钟,甲比乙的速度慢B经过20分钟,甲、乙都走了1.6千米C甲的平均速度为0.08千米/分钟D经过30分钟,甲比乙走过的路程少【分析】观察函数图象,逐项判断即可【解析】由图象可得:前10分钟,甲的速度为0.8100.08(千米/分),乙的速度是1.2100.12(千米/分),甲比乙的速度慢,故A正确,不符合题意;经过20分钟,甲、乙都走了1.6千米,
40、故B正确,不符合题意;甲40分钟走了3.2千米,甲的平均速度为3.2400.08(千米/分钟),故C正确,不符合题意;经过30分钟,甲走过的路程是2.4千米,乙走过的路程是2千米,甲比乙走过的路程多,故D错误,符合题意;故选:D【点评】本题考查一次函数的应用,解题的关键是读懂题意,能正确识图,从图中获取有用的信息10(2022绍兴)已知(x1,y1),(x2,y2),(x3,y3)为直线y2x+3上的三个点,且x1x2x3,则以下判断正确的是()A若x1x20,则y1y30B若x1x30,则y1y20C若x2x30,则y1y30D若x2x30,则y1y20【分析】根据一次函数的性质和各个选项中
41、的条件,可以判断是否正确,从而可以解答本题【解析】直线y2x+3,y随x的增大而减小,当y0时,x1.5,(x1,y1),(x2,y2),(x3,y3)为直线y2x+3上的三个点,且x1x2x3,若x1x20,则x1,x2同号,但不能确定y1y3的正负,故选项A不符合题意;若x1x30,则x1,x3异号,但不能确定y1y2的正负,故选项B不符合题意;若x2x30,则x2,x3同号,但不能确定y1y3的正负,故选项C不符合题意;若x2x30,则x2,x3异号,则x1,x2同时为负,故y1,y2同时为正,故y1y20,故选项D符合题意;故选:D【点评】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答二填空题(共8小题)11(2022湘潭)请写出一个y随x增大而增大的一次函数表达式 yx2(答案不唯一)【分析】根据y随着x的增大而增大时,比例系数k0即可确定一次函数的表达式【解析】在ykx+b中,若k0,则y随x增大而增大,只需写出一个k0的一次函数表达式即可,比如:yx2,故答案为:yx2(答案不唯一)【点评】本题考查一次函数的性质,解题的关键是掌握ykx+b中,若k