《2024年初中升学考试真题卷湖南省长沙市开福区青竹湖湘一外国语学校中考数学二模试卷.docx》由会员分享,可在线阅读,更多相关《2024年初中升学考试真题卷湖南省长沙市开福区青竹湖湘一外国语学校中考数学二模试卷.docx(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年湖南省长沙市开福区青竹湖湘一外国语学校中考数学二模试卷一、选择题(每题3分,共30分)1(3分)2023的相反数是()ABC2023D20232(3分)下列LOGO标志中,是中心对称图形,但不是轴对称图形的是()ABCD3(3分)5月5日,从长沙市文化和旅游广电局了解到,“五一“假期全市接待游客362.38万人次,实现旅游总收入35.38亿元:与清明小长假相比,游客人数和旅游收入分别增长10%和20%以上全市列入省文旅厅统计监测范围的景区共接待游客36.76万人次,实现门票收入1126.58万元,长沙成为“五一“全国旅游最热门的城市之一1126.58万元写成科学记数法法的形式是()A
2、11.2658107B1.12658107C11.2658106D0.1126581074(3分)下列运算正确的是()A2mm1Bm2m3a6Cm6m2m4D(m3)2m55(3分)石鼓广场供游客休息的石板凳如图所示,它的俯视图是()ABCD6(3分)已知一组数据:111,113,115,115,116,这组数据的平均数和众数分别是()A114,115B114,114C115,114D115,1157(3分)一次函数y2x1的图象不经过()A第一象限B第二象限C第三象限D第四象限8(3分)如果xy,那么下列不等式正确的是()Ax1y1Bx+1y+1C2x2yD2x2y9(3分)如图,ABC中,
3、ABAC,AD是BAC的平分线,已知AB10,AD6,则BC的长为()A10B16C18D2010(3分)我们把顶角为36的等腰三角形称为“黄金三角形”,它的底与腰的比值为如图,在ABC中,A36,ABAC,BD平分ABC交AC于点D,若BC2,则CD的长为()ABCD二、填空题(每题3分,共18分)11(3分)分解因式:3a26a+3 12(3分)若代数式在实数范围内有意义,则x的取值范围是 13(3分)如图,在平面直角坐标系中,已知A(6,4),B(2,3),D(3,2),ABC与DEF位似,原点O是位似中心,则E点的坐标是 14(3分)若关于x的一元二次方程x22x+k0有实数根,则实数
4、k的取值范围是 15(3分)已知圆锥的母线长为6cm,底面半径为2cm,则它的侧面展开扇形的面积为 16(3分)如图,O是ABC的外接圆,AB为直径,D是O上一点,且CBCD,CEDA交DA的延长线于点E(1)若ABC40,则ADC ;(2)若AE2,BD8,则O的半径长为 三、解答题(共72分,请将答案写在答题卡上)17计算:18先化简再求值:,其中a319如图,在坡顶的A处的同一水平面上有一座垂直于水平面的建筑物BC,某同学再沿着坡度为i5:12的斜坡AP攀行26米到达了点A,距建筑物BC底端C为5米,在坡顶A处又测得该建筑物的顶端B的仰角为76,求建筑物BC的高度(精确到0.1)(1)求
5、坡顶A到地面PQ的距离;(2)计算建筑物的高度(参考数据:sin760.97,cos760.24,tan764)20某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有 人,在扇形统计图中,“乒乓球”的百分比为 %,如果学校有800名学生,估计全校学生中有 人喜欢篮球项目(2)请将条形统计图补充完整(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学现要从中随机抽取2名同学代表班级参加校篮球队,请直接
6、写出所抽取的2名同学恰好是1名女同学和1名男同学的概率21如图,在菱形ABCD中,对角线AC、BD相交于点O,点E是AD的中点,连接OE,过点D作DFAC交OE的延长线于点F,连接AF(1)求证:AOEDFE;(2)判定四边形AODF的形状并说明理由22某公司购买了A、B两种型号的芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了100条,其购买的总费用不少于3140元,且B型的数量不高于A型数量的4倍,问一共有多少种购买方案,哪一种方案最省钱?2
7、3如图,C、D是以AB为直径的O上两点,连接AC,BD,满足CAB2ABD,作DECA交CA延长线于点E,连接DE(1)求证:DE是O的切线;(2)若AB3AE,求tanABD的值;求的值24如图,已知矩形ABCD中,AB5,AD1,点E为线段CD上一点,连接BE,以BE为边作正方形BEFG,如图所示连接BF、AF(1)如图(1),当点C在线段BF上时,求AF的长;(2)如图(2),当点E在线段CD上运动时,求AF的最小值及此时DE的长;(3)当点E在线段CD上运动时,设CE的长为a,是否存在a的值使ABF为等腰三角形,若存在则求出a的值;若不存在请说明理由25定义:在平面直角坐标系中,将函数
8、xh部分的图象记为W1,将图象W1沿xh翻折到右侧后得到的图象为W2,我们称图象W1,W2共同构成的图象称为函数的“h阶共生函数”,如函数yx的“1阶共生函数”解析式为(1)直接写出直线l:yx3的“4阶共生函数”与x轴的交点坐标;(2)已知直线ykxk3与的“0阶共生函数”共有三个交点,求此时k的取值范围;(3)若函数yx2+2的“h阶共生函数”与直线yx恰有两个不同的交点,求h的取值范围2023年湖南省长沙市开福区青竹湖湘一外国语学校中考数学二模试卷参考答案与试题解析一、选择题(每题3分,共30分)1(3分)2023的相反数是()ABC2023D2023【答案】D【分析】只有符号不同的两个
9、数叫做互为相反数,由此即可得到答案【解答】解:2023的相反数是2023故选:D2(3分)下列LOGO标志中,是中心对称图形,但不是轴对称图形的是()ABCD【答案】B【分析】根据轴对称图形与中心对称图形的概念求解【解答】解:A、是轴对称图形,是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,不是中心对称图形,故此选项错误;故选:B3(3分)5月5日,从长沙市文化和旅游广电局了解到,“五一“假期全市接待游客362.38万人次,实现旅游总收入35.38亿元:与清明小长假相比,游客人数和旅游收入分别
10、增长10%和20%以上全市列入省文旅厅统计监测范围的景区共接待游客36.76万人次,实现门票收入1126.58万元,长沙成为“五一“全国旅游最热门的城市之一1126.58万元写成科学记数法法的形式是()A11.2658107B1.12658107C11.2658106D0.112658107【答案】B【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正整数;当原数的绝对值1时,n是负整数【解答】解:1126.58万112658001.12658107故选:B4(3
11、分)下列运算正确的是()A2mm1Bm2m3a6Cm6m2m4D(m3)2m5【答案】C【分析】利用同底数幂的除法的法则,合并同类项的法则,同底数幂的乘法的法则,幂的乘方的法则对各项进行运算即可【解答】解:A、2mmm,故A不符合题意;B、m2m3a5,故B不符合题意;C、m6m2m4,故C符合题意;D、(m3)2m6,故D不符合题意;故选:C5(3分)石鼓广场供游客休息的石板凳如图所示,它的俯视图是()ABCD【答案】D【分析】根据从上面看得到的图形是俯视图,可得答案【解答】解:从上面看,可得如图形:故选:D6(3分)已知一组数据:111,113,115,115,116,这组数据的平均数和众
12、数分别是()A114,115B114,114C115,114D115,115【答案】A【分析】根据众数定义确定众数;利用算术平均数的计算方法可以算得平均数【解答】解:平均数(111+113+115+115+116)5114,数据115出现了2次,次数最多,众数是115故选:A7(3分)一次函数y2x1的图象不经过()A第一象限B第二象限C第三象限D第四象限【答案】A【分析】因为k20,b10,根据一次函数ykx+b(k0)的性质得到图象经过第二、四象限,图象与y轴的交点在x轴下方,于是可判断一次函数y2x1的图象不经过第一象限【解答】解:对于一次函数y2x1,k20,图象经过第二、四象限;又b
13、10,一次函数的图象与y轴的交点在x轴下方,即函数图象还经过第三象限,一次函数y2x1的图象不经过第一象限故选:A8(3分)如果xy,那么下列不等式正确的是()Ax1y1Bx+1y+1C2x2yD2x2y【答案】D【分析】根据不等式的性质进行分析判断【解答】解:A、在不等式xy的两边同时减去1,不等号的方向不变,即x1y1,不符合题意;B、在不等式xy的两边同时加上1,不等号的方向不变,即x+1y+1,不符合题意;C、在不等式xy的两边同时乘2,不等号法方向改变,即2x2y,不符合题意;D、在不等式xy的两边同时乘2,不等号的方向不变,即2x2y,符合题意故选:D9(3分)如图,ABC中,AB
14、AC,AD是BAC的平分线,已知AB10,AD6,则BC的长为()A10B16C18D20【答案】B【分析】先利用等腰三角形的三线合一性质可得BC2BD,ADBC,然后在RtABD中,利用勾股定理求出BD的长,进行计算即可解答【解答】解:ABAC,AD是BAC的平分线,BC2BD,ADBC,在RtABD中,AB10,AD6,BD8,BC2BD16,故选:B10(3分)我们把顶角为36的等腰三角形称为“黄金三角形”,它的底与腰的比值为如图,在ABC中,A36,ABAC,BD平分ABC交AC于点D,若BC2,则CD的长为()ABCD【答案】A【分析】根据等腰三角形的性质以及三角形内角和定理可得AB
15、CC72,再利用角平分线的定义可得DBC36,从而利用三角形内角和定理可得BDC72,进而可得CBDC72,然后利用等角对等边可得BCBD,从而可得BDC是“黄金三角形”,最后进行计算即可解答【解答】解:A36,ABAC,ABCC(180A)72,BD平分ABC,DBCABC36,BDC180DBCC72,CBDC72,BCBD,BDC是“黄金三角形”,BC2,DC1,故选:A二、填空题(每题3分,共18分)11(3分)分解因式:3a26a+33(a1)2【答案】见试题解答内容【分析】首先提取公因式3,进而利用完全平方公式分解因式得出答案【解答】解:原式3(a22a+1)3(a1)2故答案为:
16、3(a1)212(3分)若代数式在实数范围内有意义,则x的取值范围是x3【答案】见试题解答内容【分析】根据二次根式有意义的条件和分母不为零的性质,可得2x60,再解即可【解答】解:由题意得:2x60,解得:x3,故答案为:x313(3分)如图,在平面直角坐标系中,已知A(6,4),B(2,3),D(3,2),ABC与DEF位似,原点O是位似中心,则E点的坐标是 (1,1.5)【答案】(1,1.5)【分析】利用关于以原点为位似中心的对称点的坐标特征,通过点A与点D的坐标得到位似比,然后根据位似比得到E点坐标【解答】解:ABC与DEF位似,原点O是位似中心,而A(6,4),B(2,3),D(3,2
17、),OA2,OD,ABC与DEF的位似比为2:1,B(2,3),E点的坐标是为(2,3),即(1,1.5)故答案为:(1,1.5)14(3分)若关于x的一元二次方程x22x+k0有实数根,则实数k的取值范围是 k1【答案】k1【分析】先计算根的判别式,根据一元二次方程解的情况得不等式,求解即可【解答】解:(2)241k44k又关于x的一元二次方程x22x+k0有实数根,44k0k1故答案为:k115(3分)已知圆锥的母线长为6cm,底面半径为2cm,则它的侧面展开扇形的面积为 12 cm2【答案】12 cm2【分析】圆锥的侧面积Srl【解答】解:底面半径为2cm,圆锥的母线长为6cm,则圆锥侧
18、面展开图的面积为Srl2612(cm2)故答案为:12 cm216(3分)如图,O是ABC的外接圆,AB为直径,D是O上一点,且CBCD,CEDA交DA的延长线于点E(1)若ABC40,则ADC40;(2)若AE2,BD8,则O的半径长为 10【答案】(1)40;(2)10【分析】(1)由圆周角定理可得出答案;(2)过点C作CFBD于点F,证出ADBACB90,证明四边形CEDF是矩形,得出CEDF4,求出AC2,证出,求出BC的长,由勾股定理可得出答案【解答】解:(1),ADCABC40,故答案为:40;(2)过点C作CFBD于点F,BD8,CDCB,DFBF4,CEAE,CEA90,AB为
19、直径,ADBACB90,四边形CEDF是矩形,CEDF4,AE2,AC2,四边形ADBC为圆O的内接四边形,EACCBF,cosEACcosCBF,BC4,BA10故答案为:10三、解答题(共72分,请将答案写在答题卡上)17计算:【答案】【分析】根据实数的相关运算法则进行计算即可【解答】解:|4|(5)02tan45+(2)24121+32+18先化简再求值:,其中a3【答案】,【分析】先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可【解答】解:原式, 将a3代入得,原式19如图,在坡顶的A处的同一水平面上有一座垂直于水平面的建筑物BC,某同学再沿着坡度为i5:12的斜坡A
20、P攀行26米到达了点A,距建筑物BC底端C为5米,在坡顶A处又测得该建筑物的顶端B的仰角为76,求建筑物BC的高度(精确到0.1)(1)求坡顶A到地面PQ的距离;(2)计算建筑物的高度(参考数据:sin760.97,cos760.24,tan764)【答案】(1)10米;(2)20.0米【分析】(1)过点A作AHPQ于H,根据斜坡AP的坡度为i5:12,得出,设AH5k,则PH12k,AP13k,求出k值即可求解(2)由题意易得AC5,然后利用RtABC中,即可求解【解答】解:(1)过点A作AHPQ于H,如图所示,斜坡AP的坡度为i5:12,设AH5k,则PH12k,则,13k26,解得k2,
21、AH10,坡顶A到地面PQ的距离为10米(2)由题意得:AC5,在RtABC中,即,解得x20.0,古塔BC的高度约20.0米20某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有5人,在扇形统计图中,“乒乓球”的百分比为20%,如果学校有800名学生,估计全校学生中有80人喜欢篮球项目(2)请将条形统计图补充完整(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学现要从中随机抽取2名同学代表班级参
22、加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率【答案】见试题解答内容【分析】(1)先利用跳绳的人数和它所占的百分比计算出调查的总人数,再用总人数分别减去喜欢其它项目的人数可得到喜欢篮球项目的人数,再计算出喜欢乒乓球项目的百分比,然后用800乘以样本中喜欢篮球项目的百分比可估计全校学生中喜欢篮球项目的人数;(2)画树状图展示所有20种等可能的结果数,再找出所抽取的2名同学恰好是1名女同学和1名男同学的结果数,然后根据概率公式求解【解答】解:(1)调查的总人数为2040%50(人),所以喜欢篮球项目的同学的人数502010155(人);“乒乓球”的百分比100%20%,因
23、为800100%80,所以估计全校学生中有80人喜欢篮球项目;故答案为5,20,80;(2)如图,(3)画树状图为:共有20种等可能的结果数,其中所抽取的2名同学恰好是1名女同学和1名男同学的结果数为12,所以所抽取的2名同学恰好是1名女同学和1名男同学的概率21如图,在菱形ABCD中,对角线AC、BD相交于点O,点E是AD的中点,连接OE,过点D作DFAC交OE的延长线于点F,连接AF(1)求证:AOEDFE;(2)判定四边形AODF的形状并说明理由【答案】(1)见解答(2)四边形AODF为矩形【分析】(1)利用全等三角形的判定定理即可(2)先证明四边形AODF为平行四边形,再结合AOD90
24、,即可得出结论【解答】(1)证明:E是AD的中点,AEDE,DFAC,OADADF,AEODEF,AOEDFE(ASA)(2)解:四边形AODF为矩形理由:AOEDFE,AODF,DFAC,四边形AODF为平行四边形,四边形ABCD为菱形,ACBD,即AOD90,平行四边形AODF为矩形22某公司购买了A、B两种型号的芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了100条,其购买的总费用不少于3140元,且B型的数量不高于A型数量的4倍,问一共
25、有多少种购买方案,哪一种方案最省钱?【答案】(1)该公司购买的A型芯片的单价是26元,B型芯片的单价是35元;(2)一共有21种购买方案,购买A型芯片40条,B型芯片60条最省钱【分析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x9)元/条,根据数量总价单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,列出分式方程,解方程即可;(2)设购买A型芯片为m条,则购买B型芯片为(100m)条,根据购买的总费用不少于3140元,且B型的数量不高于A型数量的4倍,列出一元一次不等式组,解得20m40,得一共有21种购买方案,再设总费用为y元,由题意得y9m+3500
26、,然后由一次函数的性质即可得出结论【解答】解:(1)设该公司购买的B型芯片的单价是x元,则A型芯片的单价是(x9)元,由题意得:,解得:x35,经检验,x35是原方程的解,且符合题意,x926,答:该公司购买的A型芯片的单价是26元,B型芯片的单价是35元;(2)设购买A型芯片为m条,则购买B型芯片为(100m)条,由题意得:,解得:20m40,m为整数,m20,21,22,23,24,40,一共有21种购买方案,设总费用为y元,由题意得:y26m+35(100m)9m+3500,90,y随m的增大而减小,当m40时,y的值最小,此时100m60,答:一共有21种购买方案,购买A型芯片40条,
27、B型芯片60条最省钱23如图,C、D是以AB为直径的O上两点,连接AC,BD,满足CAB2ABD,作DECA交CA延长线于点E,连接DE(1)求证:DE是O的切线;(2)若AB3AE,求tanABD的值;求的值【答案】(1)见解析;(2);【分析】(1)连接OD,根据圆周角定理得到CABAOD,根据平行线的判定得到ACOD,求得ODDE,根据切线的判定定理即可得到结论;(2)设AEx,AB3x,连接AD,根据圆周角定理得到ADB90,推出ADEABD,根据相似三角形 到现在得到ADx,根据勾股定理得到BDx,根据三角函数的定义得到tanABD;根据勾股定理得到DEx,根据相似三角形的判定和性质
28、定理即可得到结论【解答】(1)证明:连接OD,CAB2ABD,AOD2ABD,CABAOD,ACOD,DECA,ODDE,OD是O的半径,DE是O的切线;(2)解:AB3AE,设AEx,AB3x,连接AD,AB是O的直径,ADB90,ADO+ODB90,ADE+ADO90,ADEODB,ODOB,ODBOBD,ADEABD,EADB,ADEABD,ADx,BDx,tanABD;E90,DEx,ECDABD,EADB90,ECDDBA,CE2x,ACCEAE2xxx,24如图,已知矩形ABCD中,AB5,AD1,点E为线段CD上一点,连接BE,以BE为边作正方形BEFG,如图所示连接BF、AF(
29、1)如图(1),当点C在线段BF上时,求AF的长;(2)如图(2),当点E在线段CD上运动时,求AF的最小值及此时DE的长;(3)当点E在线段CD上运动时,设CE的长为a,是否存在a的值使ABF为等腰三角形,若存在则求出a的值;若不存在请说明理由【答案】(1)AF的长为;(2)AF的最小值为,此时DE的长为;(3)存在a的值使ABF为等腰三角形,a的值为2或3或或【分析】(1)由矩形的性质得BCAD1,DCAB5,ABCBCD90,由正方形的性质得BEFE,当点C在线段BF上,则CEBF,所以FCBC1,BF2BC2,由勾股定理得AF;(2)作BEF的外接圆O,延长DC交O于点H,连接BH、F
30、H,则EHFEBF45,BHEBFE45,所以BCH90,则CBHCHB45,所以HCBC1,因为点F在直线HF上运动,所以当AFHF时,AF的值最小,设AF交DC于点I,作FLDC于点L,可求得IDAD1,HI5,则LFLILH,所以AI,FI,AFAI+FI,再证明BECEFL,得CELF,所以DEDCCE;(3)作FNAB于点N,交DC于点M,可证明MEFCBE,得MFCEa,EMBC1,所以MNBC1,则FNa+1,BNa1,再分三种情况讨论,一是当AFAB5时,则(6a)2+(a+1)252;二是当AFBF时,则a1;三是当ABFB5时,则(a+1)2+(a1)252,解方程求出符合
31、题意的a值即可【解答】解:(1)四边形ABCD是矩形,AB5,AD1,BCAD1,DCAB5,ABCBCD90,四边形BEFG是正方形,BEFE,点E为线段CD上一点,点C在线段BF上,BCE90,CEBF,FCBC1,BF2BC2,AF,AF的长为(2)如图(2),作BEF的外接圆O,延长DC交O于点H,连接BH、FH,BEFE,BEF90,EBFEFB45,EHFEBF45,BHEBFE45,BCH90,CBHCHB45,HCBC1,点F在与直线DC所夹的锐角为45的直线上运动,当AFHF时,AF的值最小,设AF交DC于点I,作FLDC于点L,AFH90,IHF45,HIFIHF45,DI
32、ADAI45,FIFH,IDAD1,HICDID+HC5+115,LFLILHHI5,DFLI90,AI,FI,AFAI+FI+,BDEELF90,BECEFL90LEF,BEEF,BECEFL(AAS),CELF,DEDCCE5,AF的最小值为,此时DE的长为(3)存在a的值使ABF为等腰三角形,作FNAB于点N,交DC于点M,DCAB,EMFANM90,EMFC,MEFCBE90BEC,EFBE,MEFCBE(AAS),MFCEa,EMBC1,BNMNBCC90,四边形BCMN是矩形,MNBC1,FNMF+MNa+1,BNCMCE1a1,当ABF为等腰三角形,且AFAB5时,如图(3),A
33、N2+FN2AF2,ANABBN5(a1)6a,(6a)2+(a+1)252,解得a12,a23;当ABF为等腰三角形,且AFBF时,如图(4),AFBF,FNAB于点N,BHANAB5,a1,解得a;当ABF为等腰三角形,且ABFB5时,如图(5),FN2+BN2FB2,(a+1)2+(a1)252,解得a1,a2(不符合题意,舍去),综上所述,a的值为2或3或或25定义:在平面直角坐标系中,将函数xh部分的图象记为W1,将图象W1沿xh翻折到右侧后得到的图象为W2,我们称图象W1,W2共同构成的图象称为函数的“h阶共生函数”,如函数yx的“1阶共生函数”解析式为(1)直接写出直线l:yx3
34、的“4阶共生函数”与x轴的交点坐标;(2)已知直线ykxk3与的“0阶共生函数”共有三个交点,求此时k的取值范围;(3)若函数yx2+2的“h阶共生函数”与直线yx恰有两个不同的交点,求h的取值范围【答案】(1)(3,0),(5,0)(2)k0或k27(3)2h1【分析】(1)直线l:yx3与x轴交点坐标(3,0),根据对称性直线l:yx3关于直线x4对称的直线与x轴交点为(5,0)得出答案(2)图如解答过程:直线ykxk3与的“0阶共生函数”y交点情况有三种,一个交点或两个交点或三个交点,分类讨论:k0时,求出直线ykxk3与y有唯一交点时k的取值,从而确定题意有三个交点k的取值范围;k0时
35、,求出直线ykxk3与y有唯一交点时k的取值,从而确定题意有三个交点k的取值范围(3)求得直线yx与抛物线的交点坐标,根据h阶共生函数的定义,结合图象即可求得【解答】解:(1)根据“h阶共生函数”定义得:直线l:yx3的“4阶共生函数”与x轴的交点坐标为(3,0),(5,0)(2)如图:当k0时,直线ykxk3与y有唯一交点时得:kxk3则kx2(k+3)x+20(k+3)24k20,直线ykxk3与y有两个交点(k1)2+80k为任意实数k0直线ykxk3与y有两个交点时,与y有一个交点k0时,直线ykxk3与的“0阶共生函数”共有三个交点k0时,直线ykxk3与y有唯一交点时得:kxk3则
36、kx2(k+3)x20(k+3)2+4k20,直线ykxk3与y有两个交点(k+7)2400k27或k27k0k27k27时,直线ykxk3与的“0阶共生函数”共有三个交点k0或k27时,直线ykxk3与的“0阶共生函数”共有三个交点(3)由,消去y整理得x2+x20,解得x12,x21,抛物线yx2+2与直线yx的交点为(2,2),(1,1),函数yx2+2的“h阶共生函数”与直线yx恰有两个不同的交点,2h1声明:试题解析著作权属所有,未经书面同意,不得复制发布日期:2023/10/7 16:59:23;用户:15013648226;邮箱:15013648226;学号:41458473第34页(共34页)