《生物神经网络系统的突触连接的可塑性与学习记忆功能 PPT课件.ppt》由会员分享,可在线阅读,更多相关《生物神经网络系统的突触连接的可塑性与学习记忆功能 PPT课件.ppt(37页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1生物神经网络系统的突触连接的可塑性生物神经网络系统的突触连接的可塑性与学习记忆功能与学习记忆功能目录目录一、生物神经网络系统一、生物神经网络系统二、二、神经突触可塑性动力学研究神经突触可塑性动力学研究三、神经三、神经学习记忆功能学习记忆功能研究研究四、一些思考四、一些思考2前言前言n生命体主要活动:生命体主要活动:物质运动物质运动-机械、电磁、化学等作用机械、电磁、化学等作用 信息活动信息活动-生长信息、认知信息、集群信息生长信息、认知信息、集群信息 这两种这两种活动活动 密切相关,为此需要深入研究它们密切相关,为此需要深入研究它们的相互作用。生物神经网络系统的动力学研究的相互作用。生物神经
2、网络系统的动力学研究突出地反映这个问题。突出地反映这个问题。n复杂网络系统的理论已经重要成果,当前的一复杂网络系统的理论已经重要成果,当前的一个发展趋势是在生物网络系统中的应用。个发展趋势是在生物网络系统中的应用。ian34一、生物神经网络系统一、生物神经网络系统神经元神经元神经元集群神经元集群脑的特定区域脑的特定区域皮层的大规模组皮层的大规模组织织全脑全脑大脑大脑生物神经网络系统概述(一)生物神经网络系统概述(一)生物神经系统作为产生感觉、学习、记忆和思维等认知功能的器官系统,是多层次的超大型信息网络,也是目前发现的最复杂的非线性网络系统。神经信息传导和整合过程是通过神经网络系统实现的,因此
3、神经系统的网络动力学行为与其信息活动和认知功能密切相关。为了进一步探讨脑神经信息传导过程和认知、思维、控制等功能的需要,必须深入研究神经网络系统的丰富动力学问题。67生物神经网络系统概述(二)生物神经网络系统概述(二)生物神经元的类型和连接形式的多样性使得神经网络系统具有复杂的拓扑结构和动态特性,表现出很强的非线性和复杂性。在整个神经系统中,神经元对信息的反应是由神经元集群共同完成的,而不是单一神经元的功能,因此我们需要从复杂网络动力学的观点去考察耦合神经元系统放电的复杂活动和时空动力学行为,探索神经系统如何对外界的信号进行加工、传导和整合,进而深入理解神经高级认知功能。8生物神经网络系统特点
4、生物神经网络系统特点生物神经网络系统首先将外界的各种刺激转化为神经电信号,通过 神经信息传导和整合过程,实现生物的认知和运动控制的功能。其复杂性表现为以下方面:n海量维数神经元和突触的数目极其巨大(如人脑约有1011个神经元,每个神经元有103-104个突触)n多种类型的神经元n多层次从分子层次直到认知和心理活动层次;每个层次都有 十分复杂的动力学行为,且彼此紧密相关n多时间尺度从电脉冲的毫秒级,到一般感觉的秒级,到学习、记忆、辨识等的更长时间n多功能包括视、听、嗅、味等感官和运动系统的功能n多影响因素神经元和突触参数、网络结构参数、时滞、噪声等n神经信息编码与解码n高度的鲁棒性、自调节性、自
5、学习能力生物神经网络系统分类(一)生物神经网络系统分类(一)n微观微观分子分子层次层次;细胞细胞层次层次;n介观介观 神经元集群(耦合振子神经元集群(耦合振子集合集合)层次层次;n 宏观宏观 器官器官和运动控制系统和运动控制系统层次层次910生物神经网络系统分类(二)生物神经网络系统分类(二)n结构性网络结构性网络(structural network)(structural network):从神经元之间直:从神经元之间直到脑功能区之间的连接关系的大脑网络生理解剖结果到脑功能区之间的连接关系的大脑网络生理解剖结果n功能性网络功能性网络(functional network)(function
6、al network):描述神经元集群:描述神经元集群(例如皮层区域)各节点之间的统计性连接关系所产生(例如皮层区域)各节点之间的统计性连接关系所产生的信息结果的信息结果n效率性网络效率性网络(effective network)(effective network):描述皮层神经网络:描述皮层神经网络各节点非线性动力学行为之间的相互影响或信息流向,各节点非线性动力学行为之间的相互影响或信息流向,比功能性网络更强调节点之间相互因果作用比功能性网络更强调节点之间相互因果作用 结构性或功能性网络可以利用图论方法结构性或功能性网络可以利用图论方法,同时采用各种技术手段同时采用各种技术手段(包括(包括
7、EEGEEG,MEGMEG,MRIMRI,fMRIfMRI,CTCT,PETPET)和理论模型及其计算仿真)和理论模型及其计算仿真一起去拼接出大脑网络的图景。但效率性网络的研究尚少。一起去拼接出大脑网络的图景。但效率性网络的研究尚少。11神经动力学神经动力学(计算神经科学)(计算神经科学)n神经动力学(计算神经科学)研究神经动力学(计算神经科学)研究生物神经元生物神经元网络的放电和信息活动网络的放电和信息活动,以及神经认知行为以及神经认知行为的的动力学问题动力学问题是非线性动力学、网络科学和神经是非线性动力学、网络科学和神经科学的跨学科交叉研究领域。科学的跨学科交叉研究领域。n建立神经科学的建
8、立神经科学的“理论、计算和实验相结合理论、计算和实验相结合”的新研究模式。的新研究模式。n向神经系统的放电活动、信息编码、网络及认向神经系统的放电活动、信息编码、网络及认知行为提出了一系列崭新研究方向和问题。知行为提出了一系列崭新研究方向和问题。12 神经医学与生物控制工程神经医学与生物控制工程生物神经元放电和编码活动生物神经元放电和编码活动生物控制科学生物控制科学生物神经复杂网络生物神经复杂网络智能机器人智能机器人神经生理解剖结构神经生理解剖结构神经认知科学神经认知科学神经计算机神经计算机神经医学神经医学13二、二、神经突触可塑性动力学研究神经突触可塑性动力学研究n突触概述突触概述n突触可塑
9、性突触可塑性n树突对树突对突触可塑性突触可塑性的影响的影响n时滞时滞、噪声对神经网络系统的放电同步噪声对神经网络系统的放电同步和时空行为的影响和时空行为的影响突触概述突触概述n神经元之间的信号传递通过精细的突触结构。神经元之间的信号传递通过精细的突触结构。神经元通过突触连接进行神经信息传递和转导,神经元通过突触连接进行神经信息传递和转导,以实现细胞间的信息交流。以实现细胞间的信息交流。n根据神经元的耦合机理,突触传递分为电突触根据神经元的耦合机理,突触传递分为电突触和化学突触两类,再按响应特性又可分为兴奋和化学突触两类,再按响应特性又可分为兴奋型和抑制型。型和抑制型。n突触动力学用以刻画在突触
10、中电信号和化学信突触动力学用以刻画在突触中电信号和化学信号的相互转化,信号的接收和传递等动力学过号的相互转化,信号的接收和传递等动力学过程。程。1415神经元间的信号传递方式:突触神经元间的信号传递方式:突触突触突触16电突触与化学突触电突触与化学突触突触耦合的数学模型突触耦合的数学模型n电耦合的数学模型为:Ie=ge(vpre(t d)vpost(t),这里 ge是耦合强度,vpre 和 vpost是突触前和突触后膜电位,d表示突触延迟。n化学耦合有多种数学模型,如 Isyn=gsyn(v vsyn)H(vpre(t-d)vthresh)这里 gsyn是耦合强度,vpre 和 vsyn是突触
11、前和突触膜电位,vthresh是突触阈值,d表示突触延迟。17神经神经突触可塑性突触可塑性 真实神经网络系统通常是动态的。为真实神经网络系统通常是动态的。为此我们不仅要考虑神经元动力系统和神此我们不仅要考虑神经元动力系统和神经网络拓扑结构的的高度非线性和复杂经网络拓扑结构的的高度非线性和复杂性,还要讨论神经网络系统的时变性、性,还要讨论神经网络系统的时变性、鲁棒性和易损性等问题鲁棒性和易损性等问题,其中涉及的一,其中涉及的一个重要问题是个重要问题是学习和记忆功能学习和记忆功能,这与,这与突突触可塑性触可塑性研究密切相关。研究密切相关。18突触可塑性的实验基础突触可塑性的实验基础nBliss(1
12、973)在麻醉的家兔海马上发现了长时程突触在麻醉的家兔海马上发现了长时程突触增强效应增强效应(long-term potentiation,LTP),单个脉冲单个脉冲测试引起群体峰电位或群体兴奋性突触后电位增高。测试引起群体峰电位或群体兴奋性突触后电位增高。nNicoll et al(1988)通过实验验证了联合型)通过实验验证了联合型LTP。n后来还发现突触后电位也能产生与长时程突触增强的后来还发现突触后电位也能产生与长时程突触增强的相反方式,使用的刺激方式是长时间的低频刺激相反方式,使用的刺激方式是长时间的低频刺激,持持续几百次即可引起兴奋性突触后电位的持续降低续几百次即可引起兴奋性突触后
13、电位的持续降低(long-term depression,LTD)。这些都为突触的变化。这些都为突触的变化提供了可靠的证据。提供了可靠的证据。n神经突触的耦合系数受到突触前后的神经元活动的相神经突触的耦合系数受到突触前后的神经元活动的相互作用的影响而随时间变化,称为互作用的影响而随时间变化,称为突触的可塑性突触的可塑性。19Hebb突触可塑性假说突触可塑性假说 20世纪中叶,神经心理学家世纪中叶,神经心理学家D.O.Hebb根根据长期实验研究的结果,提出了学习过程中突据长期实验研究的结果,提出了学习过程中突触运作的基本规律,触运作的基本规律,即即”当某一突触两端的神当某一突触两端的神经元同步激
14、活(同为兴奋或同为抑制)时,该经元同步激活(同为兴奋或同为抑制)时,该连接强度增强,反之应减弱连接强度增强,反之应减弱”的著名论断,被的著名论断,被称为称为Hebb假说假说。20The Hebbian postulate for cellular learning “When an axon of cell A is near enough to excite B and repeatedly or persistently takes part in firing it,some growth process or metabolic change takes place in one or
15、 both cells such that As efficiency,as one of the cells firing B,is increased.”21Hebb突触学习突触学习规则规则 令神经令神经细胞细胞A和和B的的电电发放为发放为Va和和Vb,它的突触,它的突触连连接系数接系数为为Wab。由于细胞由于细胞A和细胞和细胞B的发放,引起的发放,引起它它们们之间突触联系有个增量之间突触联系有个增量Wab,根据根据Hebb规则有规则有数学数学表达式表达式:Wab=f(Va,Vb),),其中其中f表示某种函数关系。表示某种函数关系。Hebb的突触学习律并没有直接告诉我们这个函数的突触学习律
16、并没有直接告诉我们这个函数f的形式如何。把神经元作为的形式如何。把神经元作为神经系统的神经系统的基本单元,神基本单元,神经元之间的突触系数作为一个变数。现在借助数学,经元之间的突触系数作为一个变数。现在借助数学,计算机科学和物理学计算机科学和物理学理论理论,提出一些学习和记忆的数,提出一些学习和记忆的数学理论学理论,这些理论都是建立这些理论都是建立在在突触可塑性基础之上突触可塑性基础之上。22Hebb的突触可塑性假说的实验验证的突触可塑性假说的实验验证 Hebb关于学习和记忆的突触可塑性变化假关于学习和记忆的突触可塑性变化假说说,在当时仅仅是一种猜想。而后,形态学研,在当时仅仅是一种猜想。而后
17、,形态学研究以及电生理实验究以及电生理实验开始开始证实这一假证实这一假说说,如,如Bliss(1973)等的工作等的工作。半世纪以来的神经。半世纪以来的神经生理学的实验研究所取的证据都倾向生理学的实验研究所取的证据都倾向于于支持支持Hebb突触修饰的假说。突触修饰的假说。还有还有一些实验表明,一些实验表明,随着某一神经回路的多次应用,该回路上的突随着某一神经回路的多次应用,该回路上的突触数量增多,体积变大,甚至还长出新的突触触数量增多,体积变大,甚至还长出新的突触出来出来,学习和记忆学习和记忆功能得到显著加强功能得到显著加强。23Hebb的突触可塑性假说的实验验证(续)的突触可塑性假说的实验验
18、证(续)近年来近年来,特别是特别是Markram、Bell、Amzica、Zhang及及Bi 等人的实验研究工作给出了较为完整等人的实验研究工作给出了较为完整的和准确的关于的和准确的关于Hebb突触的实验证明,并给出了突触的实验证明,并给出了突触修饰对于时间的敏感性以及突触修饰对于时间的敏感性以及发现了发现了Hebb猜想猜想中并未明确的突触抑制中并未明确的突触抑制(depression)机制机制。这这些工作显示:突触可塑性对时间信号具有敏感性;些工作显示:突触可塑性对时间信号具有敏感性;正相关的突触后放电将引起突触联系的增强正相关的突触后放电将引起突触联系的增强,而,而负相关的突触后放电将引起
19、突触联系减弱负相关的突触后放电将引起突触联系减弱。24树突对树突对突触可塑性突触可塑性的影响的影响 目前的神经元网络建模中,大多数连接目前的神经元网络建模中,大多数连接方式没有考虑空间方面的影响。实际上,突方式没有考虑空间方面的影响。实际上,突触可塑性是由突触前后的瞬时动作电位支配触可塑性是由突触前后的瞬时动作电位支配的,而突触后电位又受到树突棘结构性质的的,而突触后电位又受到树突棘结构性质的影响,因此树突的可兴奋性必然反映到突触影响,因此树突的可兴奋性必然反映到突触可塑性规律上面;同样地,突触在树突上的可塑性规律上面;同样地,突触在树突上的位置也会位置也会间接地间接地影响其可塑性规律。影响其
20、可塑性规律。反之,反之,突触可塑性当然影响树突的工作特性。突触可塑性当然影响树突的工作特性。25树突对树突对突触可塑性突触可塑性的影响(续)的影响(续)结论结论:n在生物神经网络模型时,在生物神经网络模型时,必然存在必然存在突触可突触可塑性与树突的可兴奋性的相互作用回路特塑性与树突的可兴奋性的相互作用回路特性。性。n树突的电性质不是静态的,要受到神经调树突的电性质不是静态的,要受到神经调制机理和突触活动的影响,因此突触学习制机理和突触活动的影响,因此突触学习规律会随着树突响应特性函数的规律会随着树突响应特性函数的 形式发形式发生动态的变化。生动态的变化。26三、三、神经神经学习记忆功能学习记忆
21、功能研究研究 学习和记忆学习和记忆是动物和人类的生存必需的重要脑基本是动物和人类的生存必需的重要脑基本功能,是两个互相联系的神经过程。学习是指获得外功能,是两个互相联系的神经过程。学习是指获得外界信号的神经过程,而记忆是将获得的信息储存和读界信号的神经过程,而记忆是将获得的信息储存和读出的神经过程。出的神经过程。学习和记忆本身也不是单一过程学习和记忆本身也不是单一过程,可以包含不同的,可以包含不同的神经过程:神经过程:学习可分为非联合型学习和联合型学习。学习可分为非联合型学习和联合型学习。记忆可分为短时记忆和长时记忆;陈述性记忆和非记忆可分为短时记忆和长时记忆;陈述性记忆和非陈述性记忆等。陈述
22、性记忆等。27Hebb理论与学习记忆功能理论与学习记忆功能 突触可塑性是学习和记忆的基础。突触可塑性是学习和记忆的基础。Hebb提出的关于突触传递变化的理论,设想在学习提出的关于突触传递变化的理论,设想在学习过程中突触发生某些变化,导致突触连接的增强和传递过程中突触发生某些变化,导致突触连接的增强和传递效能的提高。他提出重复持续的活动可以引起神经元连效能的提高。他提出重复持续的活动可以引起神经元连接的长时程变化并固定起来,即学习能力的增强。接的长时程变化并固定起来,即学习能力的增强。他后来又进一步指出,记忆不是两个神经元之间连接他后来又进一步指出,记忆不是两个神经元之间连接的变化,而是同时被激
23、活的神经元集合的持续活动可以的变化,而是同时被激活的神经元集合的持续活动可以使细胞的相互联系加强,从而实现对刺激的记忆。使细胞的相互联系加强,从而实现对刺激的记忆。神经电脉冲到达突触的时间是离散的,空间分布也是神经电脉冲到达突触的时间是离散的,空间分布也是复杂的,因此突触可塑性是统计的结果。复杂的,因此突触可塑性是统计的结果。28Hebb学习理论的发展(一)学习理论的发展(一)Hebb突触修饰假设无论对于神经科学还是计算突触修饰假设无论对于神经科学还是计算神经神经科学都是重要的。科学都是重要的。根据根据Hebb突触假突触假说说,发展了各种突,发展了各种突触变化的学习律,如经典的触变化的学习律,
24、如经典的Hebb学习律、加强学习律、学习律、加强学习律、相关学习律、协方差律、相关学习律、协方差律、BCM律。这几种学习律在具律。这几种学习律在具体执行时往往会发生突触系数无限增大,从而使系统体执行时往往会发生突触系数无限增大,从而使系统不稳定。限于神经生理学的研究,不稳定。限于神经生理学的研究,Hebb学习律还存在学习律还存在诸多问题,如诸多问题,如Hebb突触的联系效率只能增长却无上限突触的联系效率只能增长却无上限等。这在神经生理学上是没有依据的。等。这在神经生理学上是没有依据的。Hebb学习律的学习律的改进和发展改进和发展依然依然是是今后今后突触可塑性研究的重要问题之突触可塑性研究的重要
25、问题之一。一。29Hebb学习理论的发展(二)学习理论的发展(二)Oja(1982)为了避免不稳定性,提出了一)为了避免不稳定性,提出了一种非监督学习律,称之为种非监督学习律,称之为“Oja学习律学习律”。Oja 学习规则作为学习规则作为Hebb 学习规则的一种改进算法学习规则的一种改进算法,它在单个神经元的权值变化中具有很好的收敛它在单个神经元的权值变化中具有很好的收敛性性,但是在规模比较大的生物神经网络中但是在规模比较大的生物神经网络中,Oja 学习规则易使网络的解产生发散。学习规则易使网络的解产生发散。30Hebb学习理论的发展(三)学习理论的发展(三)郑鸿宇等根据实际生物神经元之间的连
26、接强郑鸿宇等根据实际生物神经元之间的连接强度随时间变化的特点度随时间变化的特点,首先构造了一个首先构造了一个Hodgkin-Huxley 方程为节点动力学模型的动态方程为节点动力学模型的动态变权小世界生物神经网络模型变权小世界生物神经网络模型,然后研究了该然后研究了该模型神经元的兴奋特性、权值变化特点和不同模型神经元的兴奋特性、权值变化特点和不同的学习系数对神经元的兴奋统计特性的影响的学习系数对神经元的兴奋统计特性的影响。最有意义的结果是最有意义的结果是,在同样的网络结构、网络参在同样的网络结构、网络参数及外部刺激信号的条件下数及外部刺激信号的条件下,学习系数学习系数b 存在一存在一个最优值个
27、最优值bopt,使生物神经网络的兴奋度在使生物神经网络的兴奋度在bopt 处处达到最大达到最大。31Hebb学习理论的发展(四)学习理论的发展(四)n脉冲时间依赖的突触可塑性(脉冲时间依赖的突触可塑性(spike-timing dependent plasticity,STDP)现象的发现,使)现象的发现,使Hebb学习律更为精确定量,时间在数十毫秒之内,学习律更为精确定量,时间在数十毫秒之内,为时间编码理论(而不是长时程的平均发放)提供为时间编码理论(而不是长时程的平均发放)提供了直接证据了直接证据。STDP的发现的发现也也是是Hebb的细胞集群理的细胞集群理论的一个实验论的一个实验证证据。
28、据。nSTDP的突触修正规律是一种快速的变化,可能对学的突触修正规律是一种快速的变化,可能对学习效果产生影响,同时习效果产生影响,同时表明表明不同类型的时间窗不同类型的时间窗口口可可能对学习的结果有关键性的作用。能对学习的结果有关键性的作用。因此因此STDP的发的发现以及其理论可能对现有的学习算法产生重大影响。现以及其理论可能对现有的学习算法产生重大影响。32Hebb学习理论的发展(五)学习理论的发展(五)nDayan&Abbott(2001)提出了一个)提出了一个STDP规规则指导下的学习律。它仅是描述了则指导下的学习律。它仅是描述了STDP的可的可塑性,这种方式的可塑性对学习过程究竟有什塑
29、性,这种方式的可塑性对学习过程究竟有什么好处,及多种窗口函数情况下学习过程有何么好处,及多种窗口函数情况下学习过程有何不同等问题还需要进一步考虑。不同等问题还需要进一步考虑。nJohannes J.Letzkus 讨论了局部突触的时间讨论了局部突触的时间依赖可塑性的学习规则,结果表明突触是根据依赖可塑性的学习规则,结果表明突触是根据局部规则改变而不是全局局部规则改变而不是全局的,的,局部突触是时间局部突触是时间依赖可塑性的关键。依赖可塑性的关键。3334四、一些思考四、一些思考 生物神经网络系统的神经元特性、耦合方式生物神经网络系统的神经元特性、耦合方式和网络拓扑结构与网络动态特性和功能密切相
30、和网络拓扑结构与网络动态特性和功能密切相关。神经突触和树突反映神经元的耦合特性,关。神经突触和树突反映神经元的耦合特性,对神经信息的加工和传导功能有十分重要影响,对神经信息的加工和传导功能有十分重要影响,因此生物神经系统的突触和树突动力学研究对因此生物神经系统的突触和树突动力学研究对于了解和分析大脑的于了解和分析大脑的学习和记忆学习和记忆功能具有十分功能具有十分重要的理论意义和应用价值。重要的理论意义和应用价值。在研究中要注意针对真实的生物神经系统在研究中要注意针对真实的生物神经系统特点建模和分析,根据生理解剖结构和实验数特点建模和分析,根据生理解剖结构和实验数据分析进行网络模型的构建和动力学
31、特性的预据分析进行网络模型的构建和动力学特性的预测。测。一些思考(续一)一些思考(续一)目前多数神经网络研究基本考虑的是不依赖目前多数神经网络研究基本考虑的是不依赖于时间的于时间的、双向双向、对称对称、无权连接矩阵的耦合无权连接矩阵的耦合方式。实际上,大脑的学习和记忆功能是与脑方式。实际上,大脑的学习和记忆功能是与脑皮层神经元间连接强度的变化规律有关的,即皮层神经元间连接强度的变化规律有关的,即通过突触可塑性去实现,因此在生物神经网络通过突触可塑性去实现,因此在生物神经网络动力学研究中采用动力学研究中采用时变时变、加权加权、非对称连接矩非对称连接矩阵阵更为合理。更为合理。我们需要根据实验结果建
32、立各种神经突触模我们需要根据实验结果建立各种神经突触模型和进行突触可塑性型和进行突触可塑性的定性和定量的定性和定量分析,分析,供供研研究在生物神经网络模型中时变连接方式究在生物神经网络模型中时变连接方式之之用。用。3536一些思考(续二)一些思考(续二)当前在神经元网络特性的动力学理论和应用中,还当前在神经元网络特性的动力学理论和应用中,还需要加强下列方面的研究:需要加强下列方面的研究:(1)神经突触可塑性对放电模式、同步活动、时空活动)神经突触可塑性对放电模式、同步活动、时空活动的动力学分析的影响。的动力学分析的影响。(2)神经突触可塑性对)神经突触可塑性对信息整合功能,神经信息传导的信息整合功能,神经信息传导的 远距离性质、保真性和鲁棒性等远距离性质、保真性和鲁棒性等的影响的影响。(3)建立和分析突触与树突的相互作用回路。)建立和分析突触与树突的相互作用回路。(4)对不同脑皮层区的神经元群体和脑深部行为的探索。)对不同脑皮层区的神经元群体和脑深部行为的探索。37感感 谢谢 指指 导导!