管理精英宣言 ppt课件.ppt

上传人:yl****t 文档编号:96933243 上传时间:2024-04-07 格式:PPT 页数:32 大小:147.62KB
返回 下载 相关 举报
管理精英宣言 ppt课件.ppt_第1页
第1页 / 共32页
管理精英宣言 ppt课件.ppt_第2页
第2页 / 共32页
点击查看更多>>
资源描述

《管理精英宣言 ppt课件.ppt》由会员分享,可在线阅读,更多相关《管理精英宣言 ppt课件.ppt(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、A simple Test For the Consecutive Ones PropertyWithout PC-trees!Consecutive 1s Property of matrices Given a(0,1)-matrix M,does there exist a PERMUTATION of the COLUMINS of M such that the 1s in the ROWS are consecutive?1 2 3 4 1 1 0 0 1 0 0 1 0 1 1 03 2 1 40 1 1 00 0 1 11 1 0 0Consecutive requiremen

2、t on the rowsEach row i of M can be viewed as a requirement that those columns with a 1 in row j must be consecutive.Booth and Lueker 1976 showed that the consecutive ones property can be tested using P-Q trees in linear time.They process the consecutive requirement in a row by row fashion.P-Q Trees

3、 Two types of internal nodes:P-nodes&Q-nodesChildren of a P-node can be“permuted arbitrarily”Children of a Q-node can only be“reversed”QP1234L(T)=all permutations generated by T In the example,L(T)=1234,1243,4321,3421 Intermediate On-Line OperationsStrictly Overlapping Relationships Two columns are

4、say,to overlap strictly if they overlap but none is contained in the other.Such a pair of rows implies the following column partition:1-1 1-1 1-1 uvIdeal Situation If there is a vertex ordering v1,v2 ,vm such that each vi strictly overlaps with some vj with j i,then it is trivial to test the consecu

5、tive ones propertyPartition Before 1-1 1-1 1-1 After 1-1 1-1 1-1 1-1 1-1 The General Case(I)Define the graph G on the set of rows whose edge set consists of those strictly overlapping pairs of columns.Each connected component of G satisfies the above“ideal situation”.The corresponding submatrices ar

6、e called prime The matrix satisfies the COP iff each of its prime submatrices doesAn example of the Graph G1234567891016437981052The General Case(II)However,we cannot afford to compute all the edges in G,which could take O(r2)time.We shall compute a subset of edges that contain a spanning tree of ea

7、ch connected component.Note that the process of obtaining the component actually decompose the matrix into prime submatricesAn Efficiency NoteThe#of strictly adjacent pairs is|A|B|.Let a,b bethe least indexed rows in A,B,respectively.To connect A,B,it suffices to make a adjacent to all rows in B and

8、 b adjacent to all rows in A.ABabAn Efficiency NoteThe#of strictly adjacent pairs is|A|B|.Let a,b bethe least indexed rows in A,B,respectively.To connect A,B,it suffices to make a adjacent to all rows in B and b adjacent to all rows in A.ABabRepresentative Rows vA and vBvv1/21/21 1 1 1 1 1 1 1 1 1 1

9、 11 1 1 1 1 1 Let v be adjacent to both A and B.But,vA and vB are forbidden to be made adjacent to A,BvAvBvAvBvBvAClassifying the neighbors of a row u uBDCA1.Append A(u),B(u)and D(u)to PT(u).2.Append uD to PT(w)for all w in C(u)whose index is smaller than Ind(uD)3.Delete the row u and use an artific

10、ial column u to replace the region covered by columns of u4.Add edges from u to nodes of PT(u)-FB(u)6145321 10 00 00 00 00 10 0 0 0 00 0 0 1 10 0 1 1 01 1 0 0 00 1 1 0 01 1 0 0 0161235640 0 0 00 0 0 10 1 1 00 0 1 1.5 0 1 11 11 00 00 00 0452631632235646453165321 .50 01 00 00 0 0 0 1 1 0 0 1 .5 1 1 35

11、640.506451645321 10 11 100.556465164532.5 .51 00.556Lemma 1If uj FB(ui)PT(ui),ij,ui and uj are connected in GLemma 2If one of the ui and uj(ij)is contained in the other and the containment is changed before iteraion i,ui and uj are connected in G.0.5uiuiujujukuk0The sub-graph G generated by the algo

12、rithmG is a spanning sub-graph of G(M)with the same components.Claim 1.G is a subgraph of G(M).If(ui,uj)G(M),(ui,uj)GClaim 2.if(ui,uj)G(M),then ui and uj belong to the same component of G(M)Claim 1G is a subgraph of G(M)ukBukAukuk0.50.5In this case,ui is in FB(uj)and uj is in FB(ui)1.ui and uj are i

13、ndependent originally.2.ui is contained in uj originally.(Lemma 2)Claim 2If(ui,uj)E(G(M),then ui and uj belong to the same component of G.Let ui,uj be the minimal bad pair.(for all other bad pair(up,uq)either ip or jq)Consider the changing of intersection relationship“intersect”to“contain”(case 1)“i

14、ntersect”to“independent”(case 2)Case 1:“intersect”to“contain”ui and uj intersect originally.Let one of the ui and uj be contained in the other after iteration k.Consider the following two subcases:Case 1.1:Both ui and uj overlap uk.Case 1.2:Only one of the ui and uj(say,z)overlaps uk (The other is n

15、amed eA)Case 1.1 Both ui and uj overlap ukukukui is connected to uj through ukuiuiujujCase 1.2 one of ui and uj(say,z)overlaps ukzeAzeAukzeAukAuk is connected to z and ukA.We shall verify if ukA is connected to eA.ukCase 1.2 Only one of the ui and uj(said)z overlaps ukCase(i)uka is contained in eA o

16、riginallyBy lemma 2,uka is connected to eA.Case(ii)uka contains eA originally zeAukAuk-1(eA)-1(ukA)-1(z)If z is deleted at iteration t(t-1(eA)zeAukAukt-1(eA)-1(z)-1(utD)eA connects utD.utD connects t.t connects z.Case 1.2Case(iii)ukA is indepenet eA originally Let ukA overlap eA atfer interation t.u

17、kA is connected to eA via ut Case(iv)ukA intersect eA originally (ukA,eA)becomes the minimal bad pair.(a contradiction)It concludes that ukA is connected to eA in G such that eA and z is connected in G.Case 2“intersect”to“independent”ui and uj intersect originally.Let one of the ui and uj become ind

18、epedent after iteration k.consider the following two subcases:Case 2.1:Both ui and uj overlap uk.Case 2.2:Only one of the ui and uj(said)z intersects uk (The other is named eA)Case 2.1 Both ui and uj overlap ukukukui is connected to uj through uk in GuiuiujujCase 2.2 Only one of the ui and uj(say,z)

19、intersects ukzeAzeAzeAukAuk is connected to z and ukA.We shall verify if ukA is connected to eA.ukCase 2.2 Only one of the ui and uj(said)z intersects uk(i)ukA is independent to eA or one is contained in the other originally.Check Claim 1(ii)ukA intersects eA originally.If ukA is not connected to eA

20、,(ukA,eA)becomes the minimal bad pair.(a contradiction)L9H6E3B+y(v%r#oWlTiQeNbK8G5D1A-x*t$qZnVkSgPdMaI7F4C0z)v&s!pXmUjRfOcK9H6E2B+y(u%rZoWlThQeNbJ8G5D1A-w*t$qYnVkSgPdLaI7F3C0z)v&s#pXmUiRfOcK9H5E2B+x(u%rZoWkThQeMbJ8G4D1z-w*t!qYnVjSgOdLaI6F3C0y)v%s#pXlUiRfNcK9H5E2A+x(u$rZoWkThPeMbJ7G4D1z-w&t!qYmVjSgOd

21、L9I6F3B0y)v%s#oXlUiQfNcK8H5D2A+x*u$rZnWkShPeMaJ7G4C1z-w&t!pYmVjRgOdL9I6E3B0y(v%s#oXlTiQfNbK8H5D2A-x*u$qZnWkShPdMaJ7F4C1z)w&s!pYmUjRgOcL9H6E3B+y(v%r#oWlTiQeNbK8G5D2A-x*t$qZnVkShPdMaI7F4C0z)w&s!pXmUjRfOcL9H6E2B+y(u%r#oWlThQeNbJ8G5D1A-w*t$qYnVkSgPdLaI7F3C0z)v&s!pXmUiRfOcK9H6E2B+x(u%rZoWlThQeMbJ8G4D1A-w

22、*t!qYnVjSgPdLaI6F3C0y)v&s#pXlUiRfNcK9H5E2A+x(u$rZoWkThQeMbJ7G4D1z-w*t!qYmVjSgOdLaI6F3B0y)v%s#pXlUiQfNcK8H5E2A+x*u$rZnWkThPeMaJ7G4C1z-w&t!pYmVjRgOdL9I6E3B0y(v%s#oXlUiQfNbK8H5D2A+x*u$qZnWkShPeMaJ7F4C1z)w&t!pYmUjRgOcL9I6E3B+y(v%r#oXlTiQeNbK8G5D2A-x*t$qZnVkShPdMaJ7F4C0z)w&s!pYmUjRfOcL9H6E3B+y(u%r#oWlTiQ

23、eNbJ8G5D1A-x*t$qYnVkSgPdMaI7F3C0z)v&s!pXmUiRfOcK9H6E2B+y(u%rZoWlThQeNbJ8G4D1A-w*t$qYnVjSgPdLaI7F3C0y)v&s#pXmUiRfNcK9H5E2B+x(u$rZoWkThQeMbJ7G4D1z-w*t!qYmVjSgOdLaI6F3C0y)v%s#pXlUiRfNcK8H5E2A+x(u$rZnWkThPeMbJ7G4C1z-w&t!qYmVjRgOdL9I6F3B0y(v%s#oXlUiQfNbK8H5D2A+x*u$rZnSgOdLaI6F3C0y)v%s#pXlUiRfNcK8H5E2A+x(

24、u$rZnWkThPeMbJ7G4C1z-w&t!qYmVjRgOdL9I6F3B0y(v%s#oXlUiQfNcK8H5D2A+x*u$rZnWkShPeMaJ7G4C1z)w&t!pYmVjRgOcL9I6E3B0y(v%r#oXlTiQfNbK8G5D2A-x*u$qZnVkShPdMaJ7F4C1z)w&s!pYmUjRgOcL9H6E3B+y(v%r#oWlTiQeNbK8G5D1A-x*t$qZnVkSgPdMaI7F4C0z)v&s!pXmUjRfOcK9H6E2B+y(u%r#oWlThQeNbJ8G5D1A-w*t$qYnVkSgPdLaI7F3C0z)v&s#pXmUiRf

25、OcK9H5E2B+x(u%rZoWkThQeMbJ8G4D1z-w*t!qYnVjSgOdLaI6F3C0y)v&s#pXlUiRfNcK9H5E2A+x(u$rZoWkThPeMbJ7G4D1z-w&t!qYmVjSgOdL9I6F3B0y)v%s#oXlUiQfNcK8H5D2A+x*u$rZnWkThPeMaJ7G4C1z-w&t!pYmVjRgOdL9I6E3B0y(v%s#oXlTiQfNbK8H5D2A-x*u$qZnWkShPdMaJ7F4C1z)w&s!pYmUjRgOcL9H6E3B+y(v%r#oXlTiQeNbK8G5D2A-x*t$qZnVkShPdMaI7F4C0z

26、)w&s!pXmUjRfOcL9H6E2B+y(u%r#oWlThQeNbJ8G5D1A-w*t$qYnVkSgPdMaI7F3C0z)v&s!pXmUiRfOcK9H6E2B+x(u%rZoWlThQeMbJ8G4D1A-w*t!qYnVjSgPdLaI6F3C0y)v&s#pXlUiRfNcK9H5E2B+x(u$rZoWPdMaI7F3C0z)v&s!pXmUiRfOcK9H6E2B+x(u%rZoWlThQeMbJ8G4D1A-w*t!qYnVjSgPdLaI6F3C0y)v&s#pXmUiRfNcK9H5E2B+x(u$rZoWkThQeMbJ7G4D1z-w*t!qYmVjSgOd

27、LaI6F3B0y)v%s#pXlUiQfNcK8H5E2A+x*u$rZnWkThPeMbJ7G4C1z-w&t!qYmVjRgOdL9I6F3B0y(v%s#oXlUiQfNbK8H5D2A+x*u$qZnWkShPeMaJ7F4C1z)w&t!pYmUjRgOcL9I6E3B+y(v%r#oXlTiQfNbK8G5D2A-x*u$qZnVkShPdMaJ7F4C0z)w&s!pYmUjRfOcL9H6E3B+y(u%r#oWlTiQeNbJ8G5D1A-x*t$qYnVkSgPdMaI7F4C0z)v&s!pXmUjRfOcK9H6E2B+y(u%rZoWlThQeNbJ8G4D1A-w

28、*t$qYnVjSgPdLaI7F3C0y)v&s#pXmUiRfNcK9H5E2B+x(u%rZoWkThQeMbJ8G4D1z-w*t!qYnVjSgOdLaI6F3C0y)v%s#pXlUiRfNcK8H5E2A+x(u$rZnWkThPeMbJ7G4C1z-w&t!qYmVjRgOdL9I6F3B0y)v%s#oXlUiQfNcK8H5D2A+x*u$rZnWkShPeMaJ7G4C1z)w&t!pYmVjRgOcL9I6E3B0y(v%r#oXlTiQfNbK8G5D2A-x*u$qZnWkShPdMaJ7F4C1z)w&s!pYmUjRgOcL9H6E3B+y(v%r#oWlTeM

29、aJ7G4C1z)w&t!pYmVjRgOcL9I6E3B0y(v%r#oXlTiQfNbK8H5D2A-x*u$qZnWkShPdMaJ7F4C1z)w&s!pYmUjRgOcL9H6E3B+y(v%r#oWlTiQeNbK8G5D1A-x*t$qZnVkSgPdMaI7F4C0z)w&s!pXmUjRfOcL9H6E2B+y(u%r#oWlThQeNbJ8G5D1A-w*t$qYnVkSgPdLaI7F3C0z)v&s#pXmUiRfOcK9H5E2B+x(u%rZoWkThQeMbJ8G4D1A-w*t!qYnVjSgPdLaI6F3C0y)v&s#pXlUiRfNcK9H5E2A+x(

30、u$rZoWkThPeMbJ7G4D1z-w&t!qYmVjSgOdL9I6F3B0y)v%s#pXlUiQfNcK8H5E2A+x*u$rZnWkThPeMaJ7G4C1z-w&t!pYmVjRgOdL9I6E3B0y(v%s#oXlTiQfNbK8H5D2A-x*u$qZnWkShLaI6F3B0y)v%s#pXlUiQfNcK8H5E2A+x*u$rZnWkThPeMaJ7G4C1z-w&t!pYmVjRgOdL9I6E3B0y(v%s#oXlTiQfNbK8H5D2A+x*u$qZnWkShPeMaJ7F4C1z)w&t!pYmUjRgOcL9I6E3B+y(v%r#oXlTiQeNb

31、K8G5D2A-x*t$qZnVkShPdMaI7F4C0z)w&s!pYmUjRfOcL9H6E3B+y(u%r#oWlTiQeNbJ8G5D1A-x*t$qYnVkSgPdMaI7F3C0z)v&s!pXmUiRfOcK9H6E2B+x(u%rZoWlThQeMbJ8G4D1A-w*t$qYnVjSgPdLaI7F3C0y)v&s#pXmUiRfNcK9H5E2B+x(u$rZoWkThQeMbJ7G4D1z-w*t!qYmVjSgOdLaI6F3B0y)v%s#pXlUiRfNcK8H5E2A+x(u$rZnWkThPeMbJ7G4C1z-w&t!qYmVjRgOdL9I6F3B0y(v

32、%s#oXlUiQfNbK8H5D2A+x*u$qZnWkShPeMaJ7G4C1z)w&XlUiRfNcK8H5E2A+x(u$rZnWkThPeMbJ7G4C1z-w&t!qYmVjRgOdL9I6F3B0y(v%s#oXlUiQfNbK8H5D2A+x*u$rZnWkShPeMaJ7G4C1z)w&t!pYmVjRgOcL9I6E3B0y(v%r#oXlTiQfNbK8G5D2A-x*u$qZnVkShPdMaJ7F4C0z)w&s!pYmUjRgOcL9H6E3B+y(v%r#oWlTiQeNbK8G5D1A-x*t$qZnVkSgPdMaI7F4C0z)v&s!pXmUjRfOcK9

33、H6E2B+y(u%rZoWlThQeNbJ8G4D1A-w*t$qYnVkSgPdLaI7F3C0z)v&s#pXmUiRfOcK9H5E2B+x(u%rZoWkThQeMbJ8G4D1z-w*t!qYnVjSgOdLaI6F3C0y)v%s#pXlUiRfNcK9H5E2A+x(u$rZoWkThPeMbJ7G4D1z-w&t!qYmVjSgOdL9I6F3B0y)v%s#oXlUiQfNcK8H5D2A+x*u$rZnWkShPeMaJ7G4C1z-w&t!pYmVjRgOdL9I6E3B0y(v%s#oXhPeMbJ7G4D1z-w&t!qYmVjSgOdL9I6F3B0y)v%s#o

34、XlUiQfNcK8H5D2A+x*u$rZnWkThPeMaJ7G4C1z-w&t!pYmVjRgOdL9I6E3B0y(v%s#oXlTiQfNbK8H5D2A-x*u$qZnWkShPdMaJ7F4C1z)w&s!pYmUjRgOcL9I6E3B+y(v%r#oXlTiQeNbK8G5D2A-x*t$qZnVkShPdMaI7F4C0z)w&s!pXmUjRfOcL9H6E2B+y(u%r#oWlThQeNbJ8G5D1A-w*t$qYnVkSgPdMaI7F3C0z)v&s!pXmUiRfOcK9H6E2B+x(u%rZoWlThQeMbJ8G4D1A-!pXmUjRfOcL9H6E2

35、B+y(u%r#oWlTiQeNbJ8G5D1A-x*t$qYnVkSgPdMaI7F3C0z)v&s!pXmUiRfOcK9H6E2B+x(u%rZoWlThQeMbJ8G4D1A-w*t!qYnVjSgPdLaI6F3C0y)v&s#pXmUiRfNcK9H5E2B+x(u$rZoWkThQeMbJ7G4D1z-w*t!qYmVjSgOdLaI6F3B0y)v%s#pXlUiQfNcK8H5E2A+x*u$rZnWkThPeMbJ7G4C1z-w&t!qYmVjRgOdL9I6F3B0y(v%s#oXlUiQfNbK8H5D2A+x*u$qZnWkShPeMaJ7F4C1z)w&t!pYmUjRgOcL9I6E3B0y(v%r#oXlTiQfNbK4C1z-w&t!qYmVjRgOdL9I6F3B0y(v%s#oXlUiQfNbK8H5D2A+x*u$qZnWkShPeMaJ7F4C1z)w&t!pYmVjRgOcL9I6E3B0y(v%r#oXlTiQfNbK8G5D2A-x*u$qZnVkShPdMaJ7F4C0z)w&s!pYmUjRfOcL9H6E3B+y(u%r#oWlTiQeNbK8G5D1A-x*t$qZnVkSgPdMaI7F4C0z)v&s!pXmUjRfOcK9H6E2

展开阅读全文
相关资源
相关搜索

当前位置:首页 > pptx模板 > 工作办公

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁