《运筹学实验报告五最优化问题.docx》由会员分享,可在线阅读,更多相关《运筹学实验报告五最优化问题.docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2018-2019学年第一学期运筹学实验报告(五)班级:交通运输171 学号:1000000000 姓名: * 日期: 2018. 12.6Y(1,1)0.0000005.000000Y(lz2)0.0000005.000000Y(1/3)0.0000005.000000Y(1,4)0.0000005.000000Y(1/5)0.0000005.000000Y(2,1)1.0000003.000000Y(2,2)0.0000003.000000Y(2,3)0.0000003.000000Y(2,4)0.0000003.000000Y(2,5)0.0000003.000000Y(3,1)1.00
2、00004.000000Y(3,2)0.0000004.000000Y(3,3)0.0000004.000000Y(3,4)0.0000004.000000Y(3,5)0.0000004.000000Y(4,1)0.0000002.000000Y(4,2)0.0000002.000000Y(4,3)0.0000002.000000Y(4,4)0.0000002.000000Y(4,5)0.0000002.000000z(1/1)0.0000005.000000Z(lz2)0.0000005.000000Z(1,3)0.0000005.000000Z(1,4)0.0000005.000000Z(
3、lz5)0.0000005.000000Z(2,1)0.0000004.000000Z(2,2)0.0000004.000000Z(2,3)1.0000004.000000Z(2,4)0.0000004.000000z(2,5)0.0000004.000000Z(3,1)0.0000001.000000Z(3,2)0.0000001.000000Z(3,3)0.0000001.000000Z(3,4)0.0000001.000000Z(3,5)0.0000001.000000Z(4,1)0.0000009.000000Z(4,2)0.0000009.000000Z(4,3)0.0000009.
4、000000Z(4,4)0.0000009.000000Z(4,5)0.0000009.000000Row12Dual Price-1.0000000.000000Slack or Surplus75.50000150.0000350.000000.0000004200.00000.0000005100.00000.00000060.0000000.00000070.0000000.00000080.0000000.00000090.0000000.000000100.0000000.000000110.0000000.000000120.0000000.000000130.0000000.0
5、00000140.0000000.000000150.0000000.000000161.0000000.000000170.0000000.000000180.0000000.000000190.0000000.000000200.0000000.000000210.0000000.000000220.0000000.000000230.0000000.000000240.0000000.000000250.0000000.000000260.0000000.000000270.0000000.000000280.0000000.000000290.0000000.000000300.000
6、0000.000000310.0000000.000000320.0000000.000000330.0000000.000000340.0000000.000000350.0000000.000000360.0000000.000000370.0000000.000000380.0000000.000000390.0000000.000000400.0000000.000000410.0000000.000000420.0000000.000000实验三:一、问题重述某班准备从5名游泳队员中选择4个人组成接力队,参加学校的4*100m混合泳接力比 赛。5名队员4种泳姿的百米平均成绩如下表所示
7、(单位:秒),问应如何选拔队员组成 接力队?甲乙丙T戊蝶泳66.857.2787067.4仰泳75.66667.874.271蛙泳8766.484.669.683.8自由泳58.65359.457.262.4进一步考虑:如果最近队员丁的蛙泳成绩有较大退步,只有75. 2秒;而队员戊经过艰 苦训练自由泳成绩有所进步,达到57. 5秒,组成接力队的方案是否应该调整?二、模型假设及符号说明以i=l, 2, 3, 4, 5分别表示5名队员,j=l, 2, 3, 4分别表示4种泳姿,以c”表示 第i名队员第j种泳姿的最好成绩;设第i名队员是否使用第i种泳姿参与比赛为Xij,若 第i名队员使用第j种泳姿参
8、与比赛,则xu=l,对应地,若xu=O,则表示第i名队员不使 用第j种泳姿参与比赛。其中,每位成员最多可上场一次,且四种游泳方式都必须有队员使 用。三、数学模型5 4min z =工=内i=l ;=l,a=1(/T,2,3,4)s. t. , x屋 l(i = 1,2,3,4,5)勺二0或1四、模型求解及结果分析模型一结果分析:当为2=83=134=匕|=1时,即甲选手以自由泳,乙选手以蝶泳,丙选手以仰泳,丁选手以蛙泳参加比赛,所得成绩时间少,即z=253.2秒;模型二结果分析:当芭2=/3=马4=匕5=1时,即乙选手以蝶泳,丙选手以仰泳,丁 选手以蛙泳,戊选手以自由泳参加比赛,所得成绩时间最
9、短,即z=257.7秒。五、附录(程序)模型一:sets :yong/1.4/;xuan/1.5/;link(yong,xuan):c,x;endsetsdata:c=66.8 57.2 78 70 67.475.6 66 67.8 74.2 7187 66.4 84.6 69.6 83.858.6 53 59.4 57.2 62.4;enddatamin=sum (link, (i, j ) : c (iz j ) *x (i, j );for(xuan (j) :sum(yong(i) :x(i,j)=1);for(yong(i):sum(xuan(j):x(i,j)=1);for(lin
10、k (i,j) :bin (x (i,j);模型一运算结果:Global optimal solution found.Objective value:Objective bound:Infeasibilities:Extended solver steps:Total solver iterations:Variablec(lz1)C(1/2)C(1,3)C(1/4)C(lz5)c(2,1)c(2,2)c(2,3)C(2,4)C(2,5)C(3,1)C(3,2)c(3,3)c(3,4)c(3,5)c(4,1)c(4,2)C(4,3)253.2000253.20000.00000000Valu
11、eReduced Cost66.800000.00000057.200000.00000078.000000.00000070.000000.00000067.400000.00000075.600000.00000066.000000.00000067.800000.00000074.200000.00000071.000000.00000087.000000.00000066.400000.00000084.600000.00000069.600000.00000083.800000.00000058.600000.00000053.000000.00000059.400000.00000
12、0C( 4, 4)57.200000.000000C( 4Z 5)62.400000.000000X( 1, 1)0.00000066.80000X( 1, 2)1.00000057.20000X( 1, 3)0.00000078.00000X( 1, 4)0.00000070.00000X( 1, 5)0.00000067.40000X( 2Z 1)0.00000075.60000X( 2Z 2)0.00000066.00000X( 2, 3)1.00000067.80000X( 2Z 4)0.00000074.20000X( 2Z 5)0.00000071.00000X( 3, 1)0.0
13、0000087.00000X( 3, 2)0.00000066.40000X( 3, 3)0.00000084.60000X( 3, 4)1.00000069.60000X( 3, 5)0.00000083.80000X( 4Z 1)1.00000058.60000X( 4, 2)0.00000053.00000X( 4, 3)0.00000059.40000X( 4Z 4)0.00000057.20000X( 4, 5)0.00000062.40000RowSlack or SurplusDual Price1253.2000-1.00000020.0000000.00000030.0000
14、000.00000040.0000000.00000050.0000000.00000061.0000000.00000070.0000000.00000080.0000000.00000090.0000000.000000100.0000000.000000模型二:sets:yong/1.4/;xuan/1.5/;link(yong,xuan):c,x;endsetsdata:c=66.8 57.2 78 70 67.475.6 66 67.8 74.2 7187 66.4 84.6 75.2 83.858.6 53 59.4 57.2 57.5;enddatamin=sum(link(i,
15、j):c(i,j)*x (i,j);for(xuan (j) :sum(yong(i) :x(i,j) 60xi+x2 7()x2 + x3 60sJ. 50x4+xs 20x5 + x6 30y之0,且一均为整数,i = 1,2,.6四、模型求解及结果分析Global optimal solution found.Objective value:150.0000Objective bound:150.0000Infeasibilities:0.000000Extended solver steps:0Total solver iterations:4ValueReduced60.000001
16、0.00000VariableCostXI1.000000X21.000000X350.000001.000000X40.0000001.000000X530.000001.000000X60.0000001.000000RowSlack, or SurplusDualPrice1150.0000-1.00000020.0000000.00000030.0000000.00000040.0000000.00000050.0000000.000000610.000000.00000070.0000000.000000根据Ling。程序运行结果分析可知:当第i班次开始上班的工作人员排布如下时,所需
17、 人力最少,为150人。班次123456人数6010500300五、附录(程序)min=xl+x2+x3+x4+x5+x6;xl+x6=60;xl+x2=70;x2+x3=60;x3+x4=50;x4+x5=20;x5+x6=30;gin(xl);gin(x2);gin(x3);gin(x4);gin(x5);gin(x6); end实验二:一、问题重述某公司正在考虑在某城市开发一些销仕:代理业务。经过测试,该公司已经确定了该城市 未来5年的业务量,分别为400, 500, 600, 700和800。该公司已经初步物色了4家销售公司作为 其代理候选企业,下表给出了该公司与每个候选企业建立代理关
18、系的一次性费用,以及每个 候选企业每年所能承揽的最大业务量和年运行费用。问改公司应该与哪些候选企业建立代理 关系?候选代理1候选代理2候选代理3候选代理4年最大业务量350250300200一次性费用(万元)100809070年运行费用(万元)7.54.06.53.0在此基础上继续讨论:如果该公司目前已经与上述4个代理建立了代理关系并处于运行 状态,但每年年初可以决定临时中断或重新恢复代理关系,每次临时中断或重新恢复代理关 系的费用如下表所示。问该公司应如何对这些代理进行业务调整?代理1代理2代理3代理4临时中断费用(万元)5342重新恢复费用(万元)5419二、模型假设及符号说明模型一:设第
19、j年与候选代理i是否开始建立代理关系为Xij,若在第j年与该候选代理i开始建 立代理关系,则xij=l,表示关系不中断,对应需要付清一次性费用,以及共(6-j)年的年 运行费用;对应地,若Xij=O,则表示该代理公司在第j年尚未建立代理关系或在此之前已经 建立了代理关系。即:七=J 1,第/年与第,家代理开始建立代理关系.0, else5且有:= 1模型二:模型假设:公司已经与四家都有代理关系符号说明:%=1 一一第j年与第i个公司有代理关系马=0笫j年与第i个公司没有代理关系为=1 一一第j年与第i个公司中断代理关系z/7 = I -第j年与第i个公司恢复代理关系三、数学模型模型一:z1)=
20、 0 一一第j年与第i个公司不恢复代理关系5555min z = 10。2xj + 8Z-v2/- + 90Zx3J + 70x4,7-1川j-ij-i+ 7.5g (6 -J)A-ly+4(6-j)x2;+ 6.5g(6一 /)刍/ + 3g (6 力匕, j=i,=i;=i,=i350xn + 250% + 300x3i + 200x41 4002222350,j + 2502占4 +300213, + 200Xx4;2 500y=ij=iJ=i六i3503 j + 250火 +300力 为 + 200 x4. 600y=i;=iij=i4 4443502% + 25。2% +30()Z%
21、 + 20()WX 2 700 j=i;=ij=ij=i5 555350Z xm + 250Z 工2, + 30。2 x3j + 200Z X4J - 800 j=i,=ij=i六i、%=0或1, i = 123,4, J = 1,2,345模型二:5555min Z = 7.5 X1, + 4.0 x2j + 6.5 x3j + 3.02 x4y7-i六 j-i7-i+ 52 )3 + 32 y2j + 4 之 y3j+y4 .7=1;=I7=1 j=l5555+4 , +Z2j + Z z3;+ 9Z z管八 ij=i八 i350x11 + 250x2I+ 300x3I+ 200x41 4
22、00350M 2 + 250x22 + 300x32 4- 200x42 500 35(1% + 250.& + 3000 + 200% 600s工 350% + 250% + 300处 + 200% 700350不 + 250x25+ 3000 + 200x45 800 为一毛(加)工)力+中,=123,4, j =0,1,2,3,4 XgfjW zm),i = 1,2,3,4, j = 1,2,3,4四、模型求解及结果分析模型一结果分析:当“=/1=匕4=1时,即公司在第一年初开始与代理1、代理2建 立代理关系,在第四年开始与代理4建立关系,此时为最少费用,即z=313.5万元。模型二结果
23、分析:当)% =%i=l,Z23=l时,即公司在与所有代理保持代理关系的前提 下,在第一年与代理2、代理3中断代理,在第3年与代理2恢复代理关系,此时为最少费 用,即z=75. 5万元。五、附录(程序)模型一运算代码:sets :buss/1.4/;year/1.5/;link(buss,year) :c, x;endsetsdata:c=350 100 7.5 5 5250 80 4.0 3 4300 90 6.5 4 1200 70 3.0 2 9;enddatamin=sum(link(i,j) :c(i,2)*x (i,j) + sum (buss (i) :c(i,3)* (5*x(
24、i,l)+4*x(i,2)+3*x(i,3)+2*x(i,4)+x(i,5)/for(buss(i):sum(year(j):x(i,j)=400;sum(buss(i):c(i,l)*(x(i,l)+x(i,2)=500;sum (buss (i) :c(izl)*(x(izl)+x(iz2)+x(i,3) ) ) =600;sum (buss (i) :c(i,l)*(x(i,l)+x(i,2)+x(i,3)+x(i,4) ) ) =700;sum(buss(i):c(i,l)*(x(i,l)+x(i,2)+x(i,3)+x(i,4)+x(i,5)=800;for(link(i,j) :b
25、in (x (i,j);模型一运算结果:Global optimal solution found.Objective value:313.5000Objective bound:313.5000Infeasibilities:0.000000Extended solver steps:0Total solver iterations:35VariableValueReduced CostC(1,1)350.00000.000000c(lz2)100.00000.000000c(1/3)7.5000000.000000c(1,4)5.0000000.000000C(1/5)5.0000000.
26、000000C(2,1)250.00000.000000C(2,2)80.000000.000000C(2,3)4.0000000.000000c(2,4)3.0000000.000000C(2,5)4.0000000.000000c(3,1)300.00000.000000C(3,2)90.000000.000000C(3,3)6.5000000.000000C(3,4)4.0000000.000000C(3,5)1.0000000.000000c(4,1)200.00000.000000C(4,2)70.000000.000000c(4,3)3.0000000.000000C(4,4)2.
27、0000000.000000C(4,5)9.0000000.000000X(1/1)1.000000137.5000x(lz2)0.000000130.0000x(1,3)0.000000122.5000X(1,4)0.000000115.0000x(lz5)0.000000107.5000X(2,1)1.000000100.0000X(2,2)0.00000096.00000X(2,3)0.00000092.00000x(2,4)0.00000088.00000X(2,5)0.00000084.00000X(3,1)0.000000122.5000x(3,2)0.000000116.0000
28、X(3,3)0.000000109.5000X(3,4)0.000000103.0000X(3,5)0.00000096.50000X(4,1)0.00000085.00000X(4,2)0.00000082.00000x(4,3)0.00000079.00000x(4,4)1.00000076.00000X(4,5)0.00000073.00000Row12Dual Price-1.0000000.000000Slack or Surplus313.50000.00000030.0000000.00000041.0000000.00000050.0000000.0000006200.0000
29、0.0000007100.00000.00000080.0000000.0000009100.00000.000000100.0000000.000000模型二:sets :buss/1.4/;year/1.5/:b;link(buss,year):c,x,y,z;endsetsdata:c=350 100 7.5 5 5250804.034300906.541200703.029;b=400 500 600700 800;enddatamin=sum(link(i,j):c(i,3)*x (i,j) +sum(link(i,j):c(i,4)*y(i,j)+sum(link(i,j):c(i
30、,5)*z (i,j);for(year(j) :sum(buss(i) :c(i,l)*x(i,j)=b (j);for(buss(i):1-x(i,1)=y (i,1);for(buss (i) :for(year(j) |j#LE#4:x(iz j)-x(i,j + 1)=y(iz j +1);for(buss(i):for(year(j)|j#LE#4:x(i,j+1)-x(i,j)=z(i,j+1);for(link(i,j) :bin (x (i,j);for(link (i,j) :bin(y(i,j);for(link(i,j):bin (z(i,j);模型二运算结果:Glob
31、al optimal solution found.Objective value:75.50000Objective bound:75.50000Infeasibilities:0.000000Extended solver steps:0Total solver iterations:141VariableB( 1)Value400.0000Reduced Cost0.000000B(2)500.00000.000000B(3)600.00000.000000B(4)700.00000.000000B(5)800.00000.000000C(1/1)350.00000.000000C(lz
32、2)100.00000.000000C(1,3)7.5000000.000000C(lz4)5.0000000.000000c(1/5)5.0000000.000000C(2,1)250.00000.000000c(2,2)80.000000.000000C(2,3)4.0000000.000000C(2,4)3.0000000.000000C(2,5)4.0000000.000000C(3,1)300.00000.000000c(3,2)90.000000.000000C(3,3)6.5000000.000000c(3,4)4.0000000.000000C(3,5)1.0000000.000000C(4,1)200.00000.000000C(4,2)70.000000.000000C(4,3)3.0000000.000000c(4,4)2.0000000.000000C(4,5)9.0000000.000000x(lz1)1.0000007.500000X(1/2)1.0000007.500000X(1,3)1.0000007.500000X(1/4)1.0000007.500000x(lz5)1.0000007.500000X(2,1)0.000000