《22141二次函数y=ax2+bx+c图象与性质20161013课件.pptx》由会员分享,可在线阅读,更多相关《22141二次函数y=ax2+bx+c图象与性质20161013课件.pptx(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、26.1.4二次函数二次函数y=ax2+bx+c的图象和性质(的图象和性质(1)xyo沾益区炎方一中沾益区炎方一中 高高 广广 早早 一般地,抛物线一般地,抛物线y=a(x-h)+k与与y=ax 的的 相同,相同,不同不同22形状形状位置位置 y=ax2y=a(x-h)+k2上加下减上加下减左加右减左加右减抛物线抛物线y=a(x-h)2+k有如下特点有如下特点:1.当当a0时,开口时,开口 ,当当a0时,开口时,开口 ,向上向上向下向下 2.对称轴是对称轴是 ;3.顶点坐标是顶点坐标是 。直线直线X=h(h,k)如何画出如何画出 的图象呢的图象呢?我们知道我们知道,像像y=a(x-h)2+k这
2、样的函数这样的函数,容易确定相应抛物线的顶点为容易确定相应抛物线的顶点为(h,k),二次二次函数函数 也能化成这样的形式也能化成这样的形式吗吗?怎样把函数怎样把函数 转化成转化成y=a(x-h)2+k的形式的形式?用配方法用配方法 配配方方 y=(x6)+3212你知道是怎样配你知道是怎样配方的吗?方的吗?(1)“提提”:提出二次项系数;:提出二次项系数;(2)“配配”:括号内配成完全平方;:括号内配成完全平方;(3)“化化”:化成顶点式。:化成顶点式。配方后的表达配方后的表达式通常称为式通常称为配配方式方式或或顶点式顶点式提取二次项系数提取二次项系数配方配方整理整理化简化简:去掉中括号去掉中
3、括号解:解:根据顶点式确定开口方向根据顶点式确定开口方向,对称轴对称轴,顶点坐标顶点坐标.x x3 34 45 56 67 78 89 9 列表列表:利用图象的对称性利用图象的对称性,选取适当值列表计算选取适当值列表计算.7.57.55 53.53.53 33.53.55 57.57.5a=0,a=0,开口向上开口向上;对称轴对称轴:直线直线x=6;x=6;顶点坐标顶点坐标:(6,3).:(6,3).描点、连线,画出函数描点、连线,画出函数 图像图像.(6,3)Ox5510问题:问题:1.看图像说说抛物线的增减性。2.怎样平移抛物线 可以得到抛物线?二次函数二次函数 y=x 6x+21图象的图
4、象的画法画法:(1)“化化”:化成顶点式:化成顶点式;(2)“定定”:确定开口方向、对称轴、顶:确定开口方向、对称轴、顶点坐标;点坐标;(3)“画画”:列表、描点、连线。:列表、描点、连线。212函数y=ax+bx+c的顶点是提取二次项系数提取二次项系数配方配方:加上再加上再减去一次项系减去一次项系数一半的平方数一半的平方整理整理:前三项完全平方式前三项完全平方式,后两项合并同类项后两项合并同类项化简化简:去掉中括号去掉中括号这个结果通常这个结果通常称为称为顶点式顶点式.归纳总结:一般地,可以用配方法将 配方成1二次函数二次函数 (a0)的图象是一条的图象是一条 抛物线抛物线;2对称轴是直线对
5、称轴是直线 ;顶点坐标是顶点坐标是 ()x=方法归纳方法归纳配方法配方法公式法公式法二次二次函数函数y=axy=ax2 2+bx+c(a0)+bx+c(a0)的图象和性质的图象和性质.顶点坐标与对称轴顶点坐标与对称轴.位置与开口方向位置与开口方向.增减性与最值增减性与最值抛物线抛物线顶点坐标顶点坐标对称轴对称轴位置位置开口方向开口方向增减性增减性最值最值y=axy=ax2 2+bx+c+bx+c(a0)y=axy=ax2 2+bx+c+bx+c(a 0抛物线开口向上抛物线开口向上解解:a=1 0抛物线开口向下抛物线开口向下(2)解解:a=2 0抛物线开口向上抛物线开口向上(4)1.1.抛物线抛
6、物线y=2xy=2x2 2+8x-11+8x-11的顶点在的顶点在 ()A.A.第一象限第一象限 B.B.第二象限第二象限 C.C.第三象限第三象限 D.D.第四象限第四象限2.2.不论不论k k 取任何实数,抛物线取任何实数,抛物线y=a(x+k)y=a(x+k)2 2+k(a0)+k(a0)的顶点都的顶点都在在()A.A.直线直线y=xy=x上上 B.B.直线直线x=-kx=-k上上 C.xC.x轴上轴上 D.yD.y轴上轴上3.3.若二次函数若二次函数y=axy=ax2 2+4x+a-1+4x+a-1的最小值是的最小值是2,2,则则a a的值是的值是()A.A.4 B.-1 C.3 D.
7、4 4 B.-1 C.3 D.4或或-1-1CBA4.4.若一次函数若一次函数 y=ax+b 的图象经过第二、三、四的图象经过第二、三、四象限,则二次函数象限,则二次函数 y=ax2+bx-3 的大致图象是的大致图象是 ()()xyoxyoxyoxyoABCD-3-3-3-3C例:指出抛物线例:指出抛物线:的开口方向,求出它的对称轴、顶点坐的开口方向,求出它的对称轴、顶点坐标、与标、与y轴的交点坐标、与轴的交点坐标、与x轴的交点坐轴的交点坐标。并画出草图。标。并画出草图。对于对于y=ax2+bx+c我们可以确定它的开口我们可以确定它的开口方向,求出它的对称轴、顶点坐标、与方向,求出它的对称轴、
8、顶点坐标、与y轴的交点坐标、与轴的交点坐标、与x轴的交点坐标(有交轴的交点坐标(有交点时),这样就可以画出它的大致图象点时),这样就可以画出它的大致图象。a=-10,开口向下,顶点坐标(开口向下,顶点坐标(2.5,9/4),与),与y轴交点坐标为轴交点坐标为(0,-4),与),与x轴交点为(轴交点为(1,0)、(4,0),),y=2x2-5x+3y=(x-3)(x+2)y=x2+4x-9求下列二次函数图像的开口、顶点、对称轴求下列二次函数图像的开口、顶点、对称轴请画出草图请画出草图:396二次二次函数函数y=axy=ax2 2+bx+c+bx+c(a0)(a0)的图象和性质的图象和性质.顶点坐
9、标与对称轴顶点坐标与对称轴.位置与开口方向位置与开口方向.增减性与最值增减性与最值抛物线抛物线顶点坐标顶点坐标对称轴对称轴位置位置开口方向开口方向增减性增减性最值最值y=axy=ax2 2+bx+c+bx+c(a0)y=axy=ax2 2+bx+c+bx+c(a0)由由a,b和和c的符号确定的符号确定由由a,b和和c的符号确定的符号确定向上向上向下向下在对称轴的左侧在对称轴的左侧,y随着随着x的增大而减小的增大而减小.在对称轴的右侧在对称轴的右侧,y随着随着x的增大而增大的增大而增大.在对称轴的左侧在对称轴的左侧,y随着随着x的增大而增大的增大而增大.在对称轴的右侧在对称轴的右侧,y随着随着x的增大而减小的增大而减小.根据图形填表:根据图形填表:本节课我们学习了哪些知识?本节课我们学习了哪些知识?你还有哪些困惑?你还有哪些困惑?