《【课件】同角三角函数的基本关系 2023-2024学年高一上学期数学人教A版(2019)必修第一册.pptx》由会员分享,可在线阅读,更多相关《【课件】同角三角函数的基本关系 2023-2024学年高一上学期数学人教A版(2019)必修第一册.pptx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、5.2.2同角三角函数的基本关系【复习复习】任意角的三角函数的定义:任意角的三角函数的定义:【思考思考】根据上述定义,你能得到角根据上述定义,你能得到角 的三角的三角函数间的哪些关系?函数间的哪些关系?xy0p(x,y)知识探究(一):知识探究(一):基本关系基本关系 思考思考1 1:如图,设如图,设是一个任意角,它是一个任意角,它的终边与单位圆交于点的终边与单位圆交于点P P,那么,正弦,那么,正弦线线MPMP和余弦线和余弦线OMOM的长度有什么内在联的长度有什么内在联系?由此能得到什么结论?系?由此能得到什么结论?P PO Ox xy yM M1 1思考思考2 2:上述关系反映了角上述关系
2、反映了角的正弦和的正弦和余弦之间的内在联系,根据等式的特点,余弦之间的内在联系,根据等式的特点,将它称为将它称为平方关系平方关系.那么当角那么当角的终边的终边在坐标轴上时,上述关系成立吗?在坐标轴上时,上述关系成立吗?O Ox xy yP PP P思考思考3 3:设角设角的终边与单位圆交于点的终边与单位圆交于点 P P(x x,y y),根据三角函数定义,有),根据三角函数定义,有 ,由此可得由此可得sinsin,coscos,tantan满足什满足什么关系?么关系?思考思考4 4:上述关系称为上述关系称为商数关系商数关系,那么商,那么商数关系成立的条件是多么?数关系成立的条件是多么?同一个角
3、的正弦、余弦的平方和等于同一个角的正弦、余弦的平方和等于1 1,商等于这个角的正切商等于这个角的正切.思考思考5 5:平方关系和商数关系平方关系和商数关系是反映同一是反映同一个角的三角函数之间的两个基本关系,个角的三角函数之间的两个基本关系,它们都是恒等式,如何用文字语言描述它们都是恒等式,如何用文字语言描述这两个关系?这两个关系?例题讲解例题讲解例题讲解例题讲解 题型一题型一题型一题型一 知一求二知一求二知一求二知一求二已知,求 的值。分分类类讨讨论论变式训练变式训练:题型二题型二 弦切的互换弦切的互换v例例2已知已知tan=2,求:求:注意:注意:“1”的灵活代换,特别是关于的灵活代换,特别是关于sina 、cosa的齐次式的齐次式v例例2已知已知tan=2,求:求:例例3求证:求证:证明:证法一证明:证法一因此因此作作差差法法题型三题型三题型三题型三 恒等变换恒等变换恒等变换恒等变换证法二:证法二:由原题知:由原题知:则则原式左边原式左边=右边右边因此因此恒恒等等变变形形的的条条件件知识提升已知 是关于x的方程 的两个根 (1)求 的值(2)求 的值