《六年级数学(下)知识点归纳.docx》由会员分享,可在线阅读,更多相关《六年级数学(下)知识点归纳.docx(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 六年级数学(下)知识点归纳第一单元 负数第二单元 百分数(二)第三单元 圆柱与圆锥第四单元 比例第五单元 数学广角鸽巢问题【第一单元 负数】1、负数:负数是数学术语,指小于0的实数,如-3。任何正数前加上负号都等于负数。在数轴线上,负数都在0的左侧,所有的负数都比自然数小。负数用负号“-”标记,如-2,-5.33,-45,-0.6等。2、正数:大于0的数叫正数(不包括0)。若一个数大于零(0),则称它是一个正数。正数的前面可以加上正号“+”来表示。正数有无数个,其中分正整数,正分数和正无理数。3、正数的几何意义:数轴上0右边的数叫做正数。4、0既不是整数,也不是负数。5、数轴:规定了原点,正
2、方向和单位长度的直线叫数轴。所有的实数都可以用数轴上的点来表示。也可以用数轴来比较两个实数的大小。6、数轴的三要素:原点、单位长度、正方向。提升题:【第二单元 百分数(二)】1、折扣:商品按原定价格的百分之几出售,叫做折扣。通称“打折”。几折就表示十分之几,也就是百分之几十。例如八折=80,六折五=0.65=65。2、成数:农业收成,经常用“成数”来表示。现广泛应用于表示各行各业的发展变化情况。一成是十分之一,也就是10%。三成五就是十分之三点五,也就是35%。3、税率(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。(2)纳税的意义:税收是国家财政收
3、入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。(3)应纳税额:缴纳的税款叫做应纳税额。(4)税率:应纳税额与各种收入的比率叫做税率。(5)应纳税额的计算方法:应纳税额 = 总收入 税率4、利率(1)存款分为活期、整存整取和零存整取等方法。(2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。(3)本金:存入银行的钱叫做本金。(4)利息:取款时银行多支付的钱叫做利息。(5)利率:利息与本金的比值叫做利率。(6)利息的计算公式:利息本金利率存期利率利息本金存期100 存期=利
4、息本金利率(7)注意:如要上利息税(国债和教育储藏的利息不纳税),则:税后利息=利息利息的应纳税额或: 税后利息=利息利息利息税率或: 税后利息=利息(1利息税率)提升题:【第三单元 圆柱与圆锥】1、圆柱的特征:(1)底面的特征:圆柱的底面是完全相的两个圆。(2)侧面的特征:圆柱的侧面是一个曲面。(3)高的特征:圆柱有无数条高。2、圆柱的高:两个底面之间的距离叫做高。3、圆柱的侧面展开图:当沿高展开时展开图是长方形;当底面周长和高相等时,沿高展开图是正方形;当不沿高展开时展开图是平行四边形。4、圆柱的侧面积:圆柱的侧面积=底面的周长高,用字母表示为:S侧=Ch。5、圆柱的表面积:圆柱的表面积=
5、侧面积+2底面积。即S表=S侧+2S底。6、圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。V=Sh7、圆锥:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。该直角边叫圆锥的轴。8、圆锥的高:从圆锥的顶点到底面圆心的距离是圆锥的高。9、圆锥的特征:(1)底面的特征:圆锥的底面一个圆。(2)侧面的特征:圆锥的侧面是一个曲面。(3)高的特征:圆锥有一条高。10、圆锥的母线:圆锥的侧面展开形成的扇形的半径、底面圆周上点到顶点的距离。圆锥有无数条母线。11、圆锥的侧面:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥
6、的母线的长。12、圆锥的侧面积=底面的周长(展开图弧长)母线2;13、圆锥的体积:一个圆锥所占空间的大小,叫做这个圆锥的体积。一个圆锥的体积等于与它等底等高的圆柱的体积的。根据圆柱体积公式V=Sh(V=rh),得出圆锥体积公式:V= Sh(S是圆锥的底面积,h是圆锥的高,r是圆锥的底面半径)14、圆柱与圆锥的关系:(1)与圆柱等底等高的圆锥体积是圆柱体积的三分之一。(2)体积和高相等的圆锥与圆柱(等底等高)之间,圆锥的底面积是圆柱的三倍。(3)体积和底面积相等的圆锥与圆柱(等低等高)之间,圆锥的高是圆柱的三倍。15、生活中的圆锥:生活中经常出现的圆锥有:沙堆、漏斗、帽子。圆锥在日常生活中也是不
7、可或缺的。提升题:【第四单元 比例】1、比例的意义:表示两个比相等的式子叫做比例。组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。2、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。这叫做比例的基本性质。3、比和比例的区别(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。(2)比有基本性质,它是化简比的依据;比例出有基本性质,它是解比例的依据。4、解比例:根据比例的基本性质,把比例转化成以前学过的方程,求比例中的未知项,叫做解比例。5、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化
8、,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。用字母表示=k(一定)。6、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果 这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。用字母表示xy=k(一定)。7、判断两种量成正比例还是成反比例的方法:关键是看这两个相关联的量中相对就的两个数的商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例。8、比例尺:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。9、比例尺的分数(1)数值比例尺和线段比例尺(2)缩小比例尺和放大
9、比例尺10、图上距离与实际距离:实际距离比例尺=图上距离图上距离比例尺=实际距离11、应用比例尺画图(1)写出图的名称、(2)确定比例尺;(3)根据比例尺求出图上距离;(4)画图(画出单位长度)(5)标出实际距离,写清地点名称(6)标出比例尺12、图形的放大与缩小:形状相同,大小不同。(相似图形)13、用比例解决问题:根据问题中的不变量找出两种相关联的量,并正确判断这两种相关联的量成什么比例关系,并根据正、反比例关系式列出相应的方程并求解。提升题:【第五单元 数学广角鸽巢问题】1、鸽巢原理也叫抽屉原理。抽屉原理:把八个苹果任意地放进七个抽屉里,不论怎样放,至少有一个抽屉放有两个或两个以上的苹果
10、。这种现象叫着抽屉原理。抽屉原理(一): 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。 抽屉原理(二): 把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体。2、抽屉原理解题的关键是正确地判断什么抽屉,什么是物体。3、利用公式进行解题物体个数鸽巣个数=商余数 至少个数=商+14、摸2个同色球计算方法:要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多1。 物体数颜色数(至少数1)1极端思想: 用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都能保证一定有两个球是同色的。 公式:两种颜色:213(个)三种颜色:314(个)四种颜色:415(个)【整理与复习】提升题:10