《统考版2024版高考数学一轮复习微专题小练习专练31数列求和文.docx》由会员分享,可在线阅读,更多相关《统考版2024版高考数学一轮复习微专题小练习专练31数列求和文.docx(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、专练31数列求和基础强化一、选择题1若数列an的通项公式为an2n2n1,则数列an的前n项和为()A2nn21 B2n1n21C.2n1n22 D2nn22等差数列an的公差为2,若a2,a4,a8成等比数列,则an的前n项和Sn()A.n(n1) Bn(n1)C. D3数列1,的前n项和为()A. BC. D4数列的前2 018项的和为()A.1 B1C.1 D15已知数列an满足an1(1)n1an2,则其前100项和为()A.250 B200C.150 D1006已知数列an满足:an1anan1(n2,nN*),a11,a22,Sn为数列an的前n项和,则S2 018()A.3 B2
2、C.1 D072023陕西省西安中学三模数列an,bn满足anbn1,ann25n6,nN*,则bn的前10项之和为()A. BC. D8已知数列an中,a1a21,an2则数列an的前20项和为()A.1 121 B1 122C.1 123 D1 12492023江苏模拟已知等差数列an的前9项和为18,函数f(x)(x2)31,则f(a1)f(a2)f(a9)()A.7 B8C.9 D10二、填空题10设Sn为等差数列an的前n项和,已知a1a3a116,则S9_11设数列an满足a11,且an1ann1(nN*),则数列的前10项的和为_12数列an满足an2(1)nan3n1,前16项
3、和为540,则a1_能力提升13数列1,12,1222,122223,12222n1,的前n项和为()A.2n1 Bn2nnC.2n1n D2n1n2142023安徽省联考已知数列an为等比数列,公比q1,a13,3a1,2a2,a3成等差数列,将数列an中的项按一定顺序排列成a1,a1,a2,a1,a2,a3,a1,a2,a3,a4,的形式,记此数列为bn,数列bn的前n项和为Sn,则S24的值是()A.1 629 B1 641C.1 668 D1 749152023安徽省滁州市检测已知数列an满足:a11,a24,4an13anan20,设bn,nN*.则b1b2b2 022_162023
4、江西省赣州市一模数列an满足anan1n2sin ()(nN*),若数列an前n项和为Sn,则S40_专练31数列求和1CSn(2222n)(1352n1)2n12n2.2Aa2,a4,a8成等比数列,aa2a8,(a13d)2(a1d)(a17d),得a1d2,Snna1dn(n1).3B2(),Sn2(1)2(1).4D,S2 018(1)()()1.5D当n2k1时,a2ka2k12,an的前100项和S100(a1a2)(a3a4)(a99a100)502100.6Aan1anan1,a11,a22,a31,a41,a52,a61,a71,a82,故数列an是周期为6的周期数列,且每连
5、续6项的和为0,故S2 0183360a2 017a2 018a1a23.7D因为anbn1,ann25n6,故bn,故bn的前10项之和为.8C由题意可知,数列a2n是首项为1,公比为2的等比数列,数列a2n1是首项为1,公差为2的等差数列,故数列an的前20项和为10121 123.选C.9C由题意知,S918,所以a1a94,a1a9a2a8a3a7a4a62a54,a52,又f(x)(x2)31,则f(x)f(4x)(x2)31(4x2)312,所以f(a1)f(a2)f(a9)f(a1)f(a9)f(a2)f(a8)f(a3)f(a7)f(a4)f(a6)f(a5)4219.10答案
6、:18解析:设等差数列an的公差为d.a1a3a116,3a112d6,即a14d2,a52,S918.11答案:解析:an1ann1,当n2时,a2a12,a3a23,a4a34,anan1n,ana1,an1(n2)又当n1时a11符合上式,an,2(),S102(1)2(1).12答案:7解析:令n2k(kN*),则有a2k2a2k6k1(kN*),a2a45,a6a817,a10a1229,a14a1641,前16项的所有偶数项和S偶517294192,前16项的所有奇数项和S奇54092448,令n2k1(kN*),则有a2k1a2k16k4(kN*),a2k1a1(a3a1)(a5
7、a3)(a7a5)(a2k1a2k1)28146k4k(3k1)(kN*),a2k1k(3k1)a1(kN*),a32a1,a510a1,a724a1,a944a1,a1170a1,a13102a1,a15140a1,S奇a1a3a158a12102444701021408a1392448.a17.13D由题意,得an12222n12n1,Sn(211)(221)(231)(2n1)(2222n)nn2n1n2.14C因为数列an为等比数列,公比q1,a13,3a1,2a2,a3成等差数列,所以4a23a1a3,即4q3q2,解得q1或q3.因为q1,所以q3,所以ana1qn13n,其前n项
8、和为Tn,所以S24T1T2T6T3()()()()(323337)71 63871 668.15答案:解析:依题意a11,a24,4an13anan20,an2an13(an1an),所以数列an1an是首项a2a13,公比为3的等比数列,所以an1an3n,ana1(a2a1)(a3a2)(anan1)13323n1,a11也满足,所以an,bn,所以b1b2b2 02211.16答案:800解析:由已知可得anan1n2sin ()S40(a1a2)(a3a4)(a5a6)(a39a40)12sin 32sin 52sin 392sin 123252392(13)(13)(57)(57)(3739)(3739)2(13573739)220800.