《【高中数学】2023-2024学年人教A版必修第一册 幂函数教案.docx》由会员分享,可在线阅读,更多相关《【高中数学】2023-2024学年人教A版必修第一册 幂函数教案.docx(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、幂函数授课年级高 一主备人审核人课题名称幂函数课型新 课授课日期学情分析幂函数是在继一次函数、反比例函数、二次函数之后,又学习了单调性、最值、奇偶性的基础上,借助实例,总结出幂函数的概念,再借助图像研究幂函数的性质.学习目标课程目标1、理解幂函数的概念,会画幂函数,的图象;2、结合这几个幂函数的图象,理解幂函数图象的变化情况和性质;3、通过观察、总结幂函数的性质,培养学生概括抽象和识图能力数学学科素养1.数学抽象:用数学语言表示函数幂函数;2.逻辑推理:常见幂函数的性质;3.数学运算:利用幂函数的概念求参数;4.数据分析:比较幂函数大小;5.数学建模:在具体问题情境中,运用数形结合思想,利用幂
2、函数性质、图像特点解决实际问题。教学重点重点:常见幂函数的概念、图象和性质;教学难点难点:幂函数的单调性及比较两个幂值的大小教具准备*(辅助工具)教学方法:以学生为主体,采用诱思探究式教学,精讲多练教学工具:多媒体流程及时间安排:教学过程:一、 情景导入学生阅读课本89页五个实例,求解析式?观察五个解析式有什么共同特征? 问题1:如果张红购买了每千克元的蔬菜千克,那么她需要付的钱数元,这里是的函数.问题2:如果正方形的边长为,那么正方形的面积,这里是的函数.问题3:如果正方体的边长为,那么正方体的体积,这里是的函数.问题4:如果正方形场地的面积为,那么正方形的边长,这里是的函数.问题5:如果某
3、人内骑车行进了,那么他骑车的平均速度,即,这里是的函数.要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.二、 预习课本,引入新课阅读课本89-90页,思考并完成以下问题1. 幂函数是如何定义的? 2. 幂函数的解析式具有什么特点?3. 常见幂函数的图象是什么?它具有哪些性质?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。三、 新知探究1幂函数一般地,函数叫做幂函数,其中是自变量,是常数.2、 幂函数的性质幂函数定义域RRR0,+)(-,0)(0,+)值域R0,+)R0,+)(-,0)(0,+)奇偶性奇函数偶函数奇函数非奇非偶函数奇函数单调性在R上是增函数
4、在0,+)上是增函数,在(-,0上是减函数在R上是增函数在0,+)上是增函数在(0,+)上是减函数,在(-,0)上是减函数公共点(1,1)四、典例分析、举一反三题型一 幂函数的概念例1函数f(x)=(m2-m-5)xm-1是幂函数,且当x(0,+)时,f(x)是增函数,试确定m的值.【答案】m=3【解析】根据幂函数的定义,得m2-m-5=1,解得m=3或m=-2.当m=3时,f(x)=x2在(0,+)上是增函数;当m=-2时,f(x)=x-3在(0,+)上是减函数,不符合要求.故m=3.解题技巧:(判断一个函数是否为幂函数)判断一个函数是否为幂函数的依据是该函数是否为y=x(为常数)的形式,即
5、:(1)系数为1;(2)指数为常数;(3)后面不加任何项.反之,若一个函数为幂函数,则该函数必具有这种形式.跟踪训练一1.如果幂函数y=(m2-3m+3)xm2-m-2的图象不过原点,求实数m的取值.【答案】m=1或m=2.【解析】由幂函数的定义得m2-3m+3=1,解得m=1或m=2;当m=1时,m2-m-2=-2,函数为y=x-2,其图象不过原点,满足条件;当m=2时,m2-m-2=0,函数为y=x0,其图象不过原点,满足条件.综上所述,m=1或m=2.题型二 幂函数的图象与性质例2已知函数y=xa,y=xb,y=xc的图象如图所示,则a,b,c的大小关系为 ()A.cbaB.abcC.b
6、caD.cab【答案】A【解析】由幂函数的图象特征,知c1,0b1.故cb2b2c,又函数y=2x在R上是增函数,于是abc.2.对于函数y=x(为常数)而言,其图象有以下特点:(1)恒过点(1,1),且不过第四象限.(2)当x(0,1)时,指数越大,幂函数图象越靠近x轴(简记为“指大图低”);当x(1,+)时,指数越大,幂函数的图象越远离x轴(简记为“指大图高”).(3)由幂函数的图象确定幂指数与0,1的大小关系,即根据幂函数在第一象限内的图象(类似于y=x-1或y= y=x,y=x3)来判断.(4)当0时,幂函数的图象在区间(0,+)上都是增函数;当0时,幂函数的图象在区间(0,+)上都是
7、减函数.跟踪训练二1.如图所示,曲线C1与C2分别是函数y=xm和y=xn在第一象限内的图象,则下列结论正确的是()A.nm0B.mnm0D.mn0 【答案】 A【解析】画出直线y=x0的图象,作出直线x=2,与三个函数图象交于点(2,20),(2,2m),(2,2n).由三个点的位置关系可知,nm13,25121312.(2)幂函数y=x-1在(-,0)上是减函数,又-23-35-1.(3)函数y1=12x在定义域内为减函数,且3412,12121234.又函数y2=x12在0,+)上是增函数,且3412,34121212.34121234.解题技巧:(比较幂函数大小)1.比较幂大小的三种常用方法2.利用幂函数单调性比较大小时要注意的问题 比较大小的两个实数必须在同一函数的同一个单调区间内,否则无法比较大小.跟踪训练三1. 已知a=243,b=425,c=2513,则()A.bacB.abcC.bcaD.cab,ac,bac.五、课堂小结让学生总结本节课所学主要知识及解题技巧板书设计*:教后反思*:本节主要学习了一类新的函数:幂函数。主要就幂函数的形式定义、图像性质、比较大小三方面学习幂函数.尤其比较大小与前面函数单调性密切相关,因此本节课需要学生熟记定义及图像特征.定级自评*: 优 中 差审核人评语*:等级评定*: 优 中 差