《高三数学第二轮专题讲座复习直线与圆锥曲线问题的处理方法2.doc》由会员分享,可在线阅读,更多相关《高三数学第二轮专题讲座复习直线与圆锥曲线问题的处理方法2.doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、综合复习材料高中资料高三数学第二轮专题讲座复习:直线与圆锥曲线问题的处理方法(2)高考要求 直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等 突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能 重难点归纳 1 直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程是否有实数解成实数解的个数问题,此时要注意用好分类讨论和数形结合的思想方法 2 当直线与圆锥曲线相交时 涉及弦长问题,常用“韦达
2、定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化 同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍 典型题例示范讲解 例1如图,已知某椭圆的焦点是F1(4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件 |F2A|、|F2B|、|F2C|成等差数列 (1)求该弦椭圆的方程;(2)求弦AC中点的横坐标;(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围 命
3、题意图 本题考查直线、椭圆、等差数列等基本知识,一、二问较简单,第三问巧妙地借助中垂线来求参数的范围,设计新颖,综合性,灵活性强 知识依托 椭圆的定义、等差数列的定义,处理直线与圆锥曲线的方法 错解分析 第三问在表达出“k=y0”时,忽略了“k=0”时的情况,理不清题目中变量间的关系 技巧与方法 第一问利用椭圆的第一定义写方程;第二问利用椭圆的第二定义(即焦半径公式)求解,第三问利用m表示出弦AC的中点P的纵坐标y0,利用y0的范围求m的范围 解 (1)由椭圆定义及条件知,2a=|F1B|+|F2B|=10,得a=5,又c=4,所以b=3 故椭圆方程为=1 (2)由点B(4,yB)在椭圆上,得
4、|F2B|=|yB|= 因为椭圆右准线方程为x=,离心率为,根据椭圆定义,有|F2A|=(x1),|F2C|=(x2),由|F2A|、|F2B|、|F2C|成等差数列,得(x1)+(x2)=2,由此得出 x1+x2=8设弦AC的中点为P(x0,y0),则x0=4 (3)解法一 由A(x1,y1),C(x2,y2)在椭圆上 得得9(x12x22)+25(y12y22)=0,即9=0(x1x2)将 (k0)代入上式,得94+25y0()=0 (k0)即k=y0(当k=0时也成立) 由点P(4,y0)在弦AC的垂直平分线上,得y0=4k+m,所以m=y04k=y0y0=y0 由点P(4,y0)在线段
5、BB(B与B关于x轴对称)的内部,得y0,所以m 例2若抛物线上总存在关于直线对称的两点,求的范围 解法一 (对称曲线相交法)曲线关于直线对称的曲线方程为 如果抛物线上总存在关于直线对称的两点,则两曲线与必有不在直线上的两个不同的交点(如图所示),从而可由 代入得有两个不同的解, 解法二 (点差法)设抛物线上以为端点的弦关于直线对称,且以为中点是抛物线(即)内的点 从而有 由 (1)-(2)得 由 从而有 例3试确定的取值范围,使得椭圆上有不同两点关于直线对称 解 设椭圆上以为端点的弦关于直线对称,且以为中点是椭圆内的点 从而有 由 (1)-(2)得 由由在直线上从而有 例4已知直线过定点A(
6、4,0)且与抛物线交于P、Q两点,若以PQ为直径的圆恒过原点O,求的值 解 可设直线的方程为代入得 设,则 由题意知,OPOQ,则即此时,抛物线的方程为 学生巩固练习 1 在抛物线y2=16x内,通过点(2,1)且在此点被平分的弦所在直线的方程是_ 2 已知两点M(1,)、N(4,),给出下列曲线方程 4x+2y1=0, x2+y2=3, +y2=1, y2=1,在曲线上存在点P满足|MP|=|NP|的所有曲线方程是_ 3 已知双曲线C的两条渐近线都过原点,且都以点A(,0)为圆心,1为半径的圆相切,双曲线的一个顶点A1与A点关于直线y=x对称 (1)求双曲线C的方程 (2)设直线l过点A,斜
7、率为k,当0k1时,双曲线C的上支上有且仅有一点B到直线l的距离为,试求k的值及此时B点的坐标 参考答案:1 解析 设所求直线与y2=16x相交于点A、B,且A(x1,y1),B(x2,y2),代入抛物线方程得y12=16x1,y22=16x2,两式相减得,(y1+y2)(y1y2)=16(x1x2)即kAB=8 故所求直线方程为y=8x15答案 8xy15=02 解析 点P在线段MN的垂直平分线上,判断MN的垂直平分线于所给曲线是否存在交点 答案 3 解 (1)设双曲线的渐近线为y=kx,由d=1,解得k=1 即渐近线为y=x,又点A关于y=x对称点的坐标为(0,)a=b,所求双曲线C的方程为x2y2=2 (2)设直线l y=k(x)(0k1,依题意B点在平行的直线l上,且l与l间的距离为设直线l y=kx+m,应有,化简得m2+2km=2 把l代入双曲线方程得(k21)x2+2mkx+m22=0,由=4m2k24(k21)(m22)=0 可得m2+2k2=2、两式相减得k=m,代入得m2=,解得m=,k=,此时x=,y= 故B(2,) 5