《高中人教A数学选修2-1导学案第2章圆锥曲线与方程2.3.2双曲线的简单几何性质(1).doc》由会员分享,可在线阅读,更多相关《高中人教A数学选修2-1导学案第2章圆锥曲线与方程2.3.2双曲线的简单几何性质(1).doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、综合复习材料高中资料2.3.2双曲线的简单几何性质(1) 学习目标 1理解并掌握双曲线的几何性质 学习过程 一、 课前准备:(预习教材理P56 P58,文P49 P51找出疑惑之处)复习1:写出满足下列条件的双曲线的标准方程: ,焦点在轴上;焦点在轴上,焦距为8,复习2:前面我们学习了椭圆的哪些几何性质?二、新课导学: 学习探究问题1:由椭圆的哪些几何性质出发,类比探究双曲线的几何性质?范围: :对称性:双曲线关于 轴、 轴及 都对称顶点:( ),( )实轴,其长为 ;虚轴,其长为 离心率:渐近线:双曲线的渐近线方程为:问题2:双曲线的几何性质?图形:范围: :对称性:双曲线关于 轴、 轴及
2、都对称顶点:( ),( )实轴,其长为 ;虚轴,其长为 离心率:渐近线:双曲线的渐近线方程为: 新知:实轴与虚轴等长的双曲线叫 双曲线 典型例题例1求双曲线的实半轴长、虚半轴的长、焦点坐标、离心率及渐近线的方程变式:求双曲线的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程例2求双曲线的标准方程: 实轴的长是10,虚轴长是8,焦点在x轴上;离心率,经过点; 渐近线方程为,经过点 动手试试练1求以椭圆的焦点为顶点,以椭圆的顶点为焦点的双曲线的方程 练2对称轴都在坐标轴上的等到轴双曲线的一个焦点是,求它的标准方程和渐近线方程 三、总结提升: 学习小结双曲线的图形、范围、顶点、对称性、离心率、渐近线 知识拓展与双曲线有相同的渐近线的双曲线系方程式为 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1 双曲线实轴和虚轴长分别是( )A、 B、 C4、 D4、2双曲线的顶点坐标是( )A B C D()3 双曲线的离心率为( )A1 B C D24双曲线的渐近线方程是 5经过点,并且对称轴都在坐标轴上的等轴双曲线的方程是 课后作业 1求焦点在轴上,焦距是16,的双曲线的标准方程2求与椭圆有公共焦点,且离心率的双曲线的方程5