《高中人教A全册数学选修1-1导学案2.1.1椭圆及其标准方程.doc》由会员分享,可在线阅读,更多相关《高中人教A全册数学选修1-1导学案2.1.1椭圆及其标准方程.doc(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、综合复习材料高中资料2. 1.1椭圆的标准方程一 预习目标理解椭圆的定义,掌握椭圆的标准方程的推导及标准方程二 预习内容1.什么叫做曲线的方程?求曲线方程的一般步骤是什么?其中哪几个步骤必不可少? 2.圆的几何特征是什么?你能否可类似地提出一些轨迹命题作广泛的探索?3椭圆的定义:-轨迹叫做椭圆.这两个定点叫做椭圆的-,两焦点的距离叫做-。4. 椭圆标准方程的推导:建系;以-为 轴,-为 轴,建立直角坐标系,则 的坐标分别为:-写出点集;设P( )为椭圆上任意一点,根据椭圆定义知:-坐标化;化简(注意根式的处理和令a2-c2=b2)类似的,焦点在- 轴上的椭圆方程为:-其中焦点坐标为:-三、提出
2、疑惑 同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一、学习目标1.通过对椭圆概念的引入与标准方程的推导,培养学生分析探索能力,增强运用坐标法解决几何问题的能力。 2通过对椭圆标准方程的推导的教学,可以提高对各种知识的综合运用能力重点:椭圆的定义的理解及其标准方程记忆难点:椭圆标准方程的推导二、学习过程1.思考:(1)动点是在怎样的条件下运动的?(2)动点运动出的轨迹是什么?得出结论:在平面上到两个定点F1,F2距离之和等于定值2a的点的轨迹为2推导椭圆的标准方程1)建系:以F1,F2所在直线为x轴,线段F1F2的中点为原点建立直角坐标系,并设椭圆上
3、任意一点的坐标为M(x,y),设两定点坐标为:F1(-c,0),F2(c,0),2)则M满足:|MF1|+|MF2|=2a,思考:我们要化简方程就是要化去方程中的根式,你学过什么办法?a4-2a2cx+c2x2=a2x2-2a2cx+a2c2+a2y2,整理得:(a2-c2)x2+a2y2=a2(a2-c2)b2=a2-c2得:3.例题例1 已知椭圆两个焦点的坐标分别是,并且经过点,求它的标准方程设椭圆的标准方程为-,因点在椭圆上,代入化简可得标准方程。例2 如图,在圆上任取一点,过点作轴的垂线段,为垂足当点在圆上运动时,线段的中点的轨迹是什么?分析:点在圆上运动,由点移动引起点的运动,则称点
4、是点的伴随点,因点为线段的中点,则点的坐标可由点来表示,从而能求点的轨迹方程例3如图,设,的坐标分别为,直线,相交于点,且它们的斜率之积为,求点的轨迹方程分析:若设点,则直线,的斜率就可以用含的式子表示,由于直线,的斜率之积是,因此,可以求出之间的关系式,即得到点的轨迹方程三、反思总结1.椭圆方程得标准形式为:2.求动点轨迹方程的步骤是什么?四、当堂检测1.求适合下列条件的椭圆的标准方程: (1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上一点P到两焦点距离的和等于10; (2)两个焦点的坐标分别是(0,-2),(0,2),并且椭圆经过点 2. 平面内两个定点的距离为8,动点M到两个定
5、点的距离的和为10,求动点M的轨迹方程。课后练习与提高 A、5 B、5或8 C、3或5 D、202、如果方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是( )A、(0,+) B、(0,2) C、(1,+) D、(0,1) A、2 B、3 C、5 D、7 A、2a B、4a C、8a D、2a+2b5、若关于x、y的方程x2sin-y2cos=1所表示的曲线是椭圆,则方程(x+cos)2+(y+sin)2=1所表 示的圆的圆心在( ) A、第一象限 B、第二象限 C、第三象限 D、第四象限 6、已知椭圆的焦点是F1(-1,0),F2(1,0),点P为椭圆上一点,且|F1F2|是
6、|PF1|与|PF2|的等 差中项,则椭圆的方程是( )7、已知椭圆 上一点P到其一个焦点的距离为3,则点P到另一个焦点的距离为( ) A、2 B、3 C、5 D、78、如果椭圆E:4x2+y2=k上两点间的距离最大是8,则k值为( ) A、32 B、16 C、8 D、4 9、已知F1、F2是椭圆 的两焦点,过点F2的直线交椭圆于点A、B,若|AB|=5,则|AF1|+|BF1|的值为( ) A、11 B、10 C、9 D、1610、已知椭圆的标准方程是 ,M1、M2为椭圆上的点。 (1)点M1(4,2.4)与焦点的距离分别是_,_; (2)点M2到一个焦点的距离等于3,则它到另一焦点的距离等
7、于_.2.1.1椭圆及其标准方程教学目标:1掌握椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程;2能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程;3通过对椭圆概念的引入教学,培养学生的观察能力和探索能力;4通过椭圆的标准方程的推导,使学生进一步掌握求曲线方程的一般方法,并渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力; 5通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识重点:椭圆的定义的理解及其标准方程记忆难点:椭圆标准方程的推导教学过程一、复习并引入新课思考问题:1.在解析几何中,我们通常把动点按照某种规
8、律运动形成的轨迹叫做曲线曲线和方程的关系是什么?(如果曲线上任意一点的坐标都是方程f(x,y)=0的解,同时以方程f(x,y)=0的解为坐标的点又都在曲线上,那么方程就是曲线的方程,曲线就是方程的曲线)2.圆的定义是:在平面上,到定点的距离等于定长的点的轨迹;那么当动点满足哪些条件时轨迹仍然是圆? (平面上到两个定点(距离为2d)距离的平方和等于定值a(a2d2)的点的轨迹是圆;平面上,与两个定点连线的斜率乘积为-1的点的轨迹是圆)由此可见,平面上到两个定点距离或与两个定点连线满足某种条件的点的轨迹比较特殊,下面就从这点出发研究二、讲授新课1请学生观察计算机演示如图2-23,并思考两个问题(1
9、)动点是在怎样的条件下运动的?(2)动点运动出的轨迹是什么?(3)是否到两个定点距离之和等于定值的点的轨迹就一定是椭圆呢?观察后请学生回答 (学生可能一时答不出,教师可请学生观察计算机演示如图2-24并思考)(4)当两个定点位置变化时,轨迹发生了怎样的变化?从而得出结论:在平面上到两个定点F1,F2距离之和等于定值2a的点的轨迹为最后由学生口述教师板书:把平面内与两个定点F1,F2距离之和等于定值2a的点的轨迹叫做椭圆,其中2a|F1F2|顺便可以指出两个定点叫做焦点,两个焦点之间的距离叫做焦距,用2c(c0)表示2推导椭圆的标准方程思考问题:(1)求曲线方程的步骤是什么?(2)求到两个定点F
10、1,F2距离之和等于定值2a(2a|F1F2|)的点的轨迹(求曲线方程的步骤是:建立坐标系设动点坐标:寻找动点满足的几何条件;把几何条件坐标化;化简得方程;检验其完备性)注:建立直角坐标系一般应符合简单和谐化的原则,如使关键点的坐标、关键几何量(距离、直线的斜率等)的表达式简单化,注意要充分利用图形的特殊性(让学生思考后回答)教师归纳大体上有如下三个方案:取一个定点为原点,以F1,F2所在直线为x轴建立直角坐标系,如图2-25;以F1,F2所在直线为y轴,线段F1F2的中点为原点建立直角坐标系,如图2-26;以F1,F2所在直线为x轴,线段F1F2的中点为原点建立直角坐标系,最后选定方案,如图
11、2-27,推导出方程解 1)建系:以F1,F2所在直线为x轴,线段F1F2的中点为原点建立直角坐标系,并设椭圆上任意一点的坐标为M(x,y),设两定点坐标为:F1(-c,0),F2(c,0),2)则M满足:|MF1|+|MF2|=2a,a4-2a2cx+c2x2=a2x2-2a2cx+a2c2+a2y2,整理得:(a2-c2)x2+a2y2=a2(a2-c2)启发学生观察图形如图2-28,看看a与c的关系如何?(根据椭圆定义知道a2c2,且如图所示,a与c可以看成RtMOF2的斜边和直角边)不妨令b2=a2-c2,则方程就变形为b2x2+a2y2=a2b2,再化简, (*) (*)式就是焦点在
12、x轴上的椭圆的标准方程,最后说明:1)方程中条件ab0不可缺少(结合图形),当a=b0时,就化成圆心在原点的圆的方程,从而进一步说明圆是椭圆的特例;(这实际上是一种极限情况)2)b的选取虽然是为了方程形式简洁与和谐,但也有实际的几何意义,即:b2=a2-c2;3)请学生猜想:若用方案(即焦点在y轴上),得到的方程形式又如何呢?(启发学生根据对称性进行猜想)三、例题例1 已知椭圆两个焦点的坐标分别是,并且经过点,求它的标准方程分析:由椭圆的标准方程的定义及给出的条件,容易求出引导学生用其他方法来解另解:设椭圆的标准方程为,因点在椭圆上,则例2 如图,在圆上任取一点,过点作轴的垂线段,为垂足当点在
13、圆上运动时,线段的中点的轨迹是什么?分析:点在圆上运动,由点移动引起点的运动,则称点是点的伴随点,因点为线段的中点,则点的坐标可由点来表示,从而能求点的轨迹方程引申:设定点,是椭圆上动点,求线段中点的轨迹方程解法剖析:(代入法求伴随轨迹)设,;(点与伴随点的关系)为线段的中点,;(代入已知轨迹求出伴随轨迹),点的轨迹方程为;伴随轨迹表示的范围例3如图,设,的坐标分别为,直线,相交于点,且它们的斜率之积为,求点的轨迹方程分析:若设点,则直线,的斜率就可以用含的式子表示,由于直线,的斜率之积是,因此,可以求出之间的关系式,即得到点的轨迹方程解法剖析:设点,则,;代入点的集合有,化简即可得点的轨迹方程引申:如图,设的两个顶点,顶点在移动,且,且,试求动点的轨迹方程引申目的有两点:让学生明白题目涉及问题的一般情形;当值在变化时,线段的角色也是从椭圆的长轴圆的直径椭圆的短轴作业:P40练习 11