人教A数学必修二全册教案2.3.2平面与平面垂直的判定2.doc

上传人:蓝**** 文档编号:96229207 上传时间:2023-09-28 格式:DOC 页数:5 大小:213KB
返回 下载 相关 举报
人教A数学必修二全册教案2.3.2平面与平面垂直的判定2.doc_第1页
第1页 / 共5页
人教A数学必修二全册教案2.3.2平面与平面垂直的判定2.doc_第2页
第2页 / 共5页
点击查看更多>>
资源描述

《人教A数学必修二全册教案2.3.2平面与平面垂直的判定2.doc》由会员分享,可在线阅读,更多相关《人教A数学必修二全册教案2.3.2平面与平面垂直的判定2.doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、综合复习材料高中资料2. 3.2平面与平面垂直的判定【教学目标】(1)使学生正确理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“两个平面互相垂直”的概念;(2)使学生掌握两个平面垂直的判定定理及其简单的应用;(3)使学生理会“类比归纳”思想在数学问题解决上的作用。(4)通过实例让学生直观感知“二面角”概念的形成过程;(5)类比已学知识,归纳“二面角”的度量方法及两个平面垂直的判定定理。【教学重难点】重点:平面与平面垂直的判定。难点:找出二面角的平面角。【教学过程】(一)创设情景,揭示课题问题1:平面几何中“角”是怎样定义的?问题2:在立体几何中,“异面直线所成的角”、“直线和平面所成

2、的角”又是怎样定义的?它们有什么共同的特征?以上问题让学生自由发言,教师再作小结,并顺势抛出问题:在生产实践中,有许多问题要涉及到两个平面相交所成的角的情形,你能举出这个问题的一些例子吗?如修水坝、发射人造卫星等,而这样的角有何特点,该如何表示呢?下面我们先利用具体的实物来进行观察,研探。(二)研探新知1、二面角的有关概念老师展示一张纸面,并对折让学生观察其状,然后引导学生用数学思维思考,并对以上问题类比,归纳出二面角的概念及记法表示(如下表所示)角二面角图形 A 边 顶点 O B 边A 棱 lB 定义从平面内一点出发的两条射线(半直线)所组成的图形从空间一直线出发的两个半平面所组成的图形构成

3、射线 点(顶点)一 射线半平面 一 线(棱)一 半平面表示AOB二面角-l-或-AB-2、二面角的度量二面角定理地反映了两个平面相交的位置关系,如我们常说“把门开大一些”,是指二面角大一些,那我们应如何度量二两角的大小呢?师生活动:师生共同做一个小实验(预先准备好的二面角的模型)在其棱上位取一点为顶点,在两个半平面内各作一射线(如图2.3-3),通过实验操作,研探二面角大小的度量方法二面角的平面角。BAO教师特别指出:(1)在表示二面角的平面角时,要求OAL ,OBL;(2)AOB的大小与点O在L上位置无关;(3)当二面角的平面角是直角时,这两个平面的位置关系怎样?承上启下,引导学生观察,类比

4、、自主探究, 获得两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。 图2.3-3 (三)实际应用,巩固深化 例1、(课本69页例3)设AB是圆O的直径,PA垂直于圆O所在平面,C是圆周上的任意点,求证:面PAC 面PBC.变式: 课本的探究问题例2、已知直线PA垂直正方形ABCD所在的平面,A为垂足。求证:平面PAC平面PBD。说明:这两题都涉及线面垂直、面面垂直的性质和判定,其中证明BC平面PAC和BD平面PAC是关键从解题方法上说,由于“线线垂直”、“线面垂直”与“面面垂直”之间可以相互转化,因此整个解题过程始终沿着“线线垂直线面垂直面面垂直”转化途径进行变式.

5、课本的练习(四)小结归纳,整体认识(1)二面角以及平面角的有关概念;(2)两个平面垂直的判定定理的内容,它与直线与平面垂直的判定定理有何关系?(五)当堂检测P81习题 2.3 A组 第4、6、7题, B组 第1题【板书设计】二面角的概念 两个平面垂直的定义两个平面垂直的判定定理三种形式描述例1例2【作业布置】导学案课后练习与提高2.3.2平面与平面垂直的判定课前预习学案一、预习目标:(1)明确角的定义及推广。(2)初步知道什么是二面角。二、预习内容问题1:平面几何中“角”是怎样定义的?问题2:在立体几何中,“异面直线所成的角”、“直线和平面所成的角”又是怎样定义的?它们有什么共同的特征?问题3

6、、二面角的有关概念角二面角图形 A 边 顶点 O B 边A 棱 lB 定义从平面内一点出发的两条射线(半直线)所组成的图形构成射线 点(顶点)一 射线表示AOB问题4、二面角如何度量?三、提出疑惑同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中疑惑点疑惑内容课内探究学案一学习目标(1)使学生正确理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“两个平面互相垂直”的概念;(2)使学生掌握两个平面垂直的判定定理及其简单的应用;(3)使学生理会“类比归纳”思想在数学问题解决上的作用。(4)通过实例让学生直观感知“二面角”概念的形成过程;(5)类比已学知识,归纳“二面角”的度量方法

7、及两个平面垂直的判定定理。学习重点:平面与平面垂直的判定。学习难点:找出二面角的平面角。二、学习过程(一)、二面角的平面角1、 如何找出二面角的平面角?2、二面角的平面角为 说明了什么?(二)、平面与平面垂直的判定定理(文字,符号及图形表示)(三)、定理的应用例1(课本中的例3)变式1、课本的探究问题例2、已知直线PA垂直正方形ABCD所在的平面,A为垂足。求证:平面PAC平面PBD。变式2、课本的练习当堂达标测试P81习题 2.3 A组 第4、6、7题, B组 第1题课后练习与提高1过平面外两点且垂直于平面的平面 ( )有且只有一个 不是一个便是两个 有且仅有两个 一个或无数个2若平面平面,直线,,,则 ( ) 且 与中至少有一个成立3对于直线和平面,的一个充分条件是 ( ), 4设表示三条直线,表示三个平面,给出下列四个命题:若,则;若是在内的射影,则;若,则; 若,则其中真命题是 ( ) 5如图正方体中,分别是的中点,求证:平面平面。6如图,四棱锥的底面是边长为的正方形,底面,为的中点,且,(1)求证:平面平面 (2)求点到平面的距离参考答案1、D2、D3、B4、A 5,6(略)5

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁