《高中人教A全册数学必修4学案2.2.1向量的加法运算及其几何意义(教、学案).doc》由会员分享,可在线阅读,更多相关《高中人教A全册数学必修4学案2.2.1向量的加法运算及其几何意义(教、学案).doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、综合复习材料高中资料2. 2.1 向量的加法运算及其几何意义教学目标:1、掌握向量的加法运算,并理解其几何意义; 2、会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力; 3、通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量.教学难点:理解向量加法的定义.学 法:数能进行运算,向量是否也能进行运算呢?数的加法启发我们,从运算的角度看,位移的合成、力的合成可看作向量的加法.借助于物理中位移的合成、力的合成来理解向量的加
2、法,让学生顺理成章接受向量的加法定义.结合图形掌握向量加法的三角形法则和平行四边形法则.联系数的运算律理解和掌握向量加法运算的交换律和结合律.教 具:多媒体或实物投影仪,尺规授课类型:新授课教学过程:一、设置情景:1、 复习:向量的定义以及有关概念强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置A B C2、 情景设置:(1)某人从A到B,再从B按原方向到C,C A B 则两次的位移和:(2)若上题改为从A到B,再从B按反方向到C,A BC 则两次的位移和:(3)某车从A到B,
3、再从B改变方向到C,A BC 则两次的位移和:(4)船速为,水速为,则两速度和:二、探索研究:、向量的加法:求两个向量和的运算,叫做向量的加法.、三角形法则(“首尾相接,首尾连”)如图,已知向量a、.在平面内任取一点,作a,则向量叫做a与的和,记作a,即 a,规定: a + 0-= 0 +a a aABCa+ba+baabbaa探究:(1)两相向量的和仍是一个向量;(2)当向量与不共线时,+的方向不同向,且|+|,则+的方向与相同,且|+|=|-|;若|,则+的方向与相同,且|+| |-|;若|,则+的方向与相同,且|+b| |-|.(4)“向量平移”(自由向量):使前一个向量的终点为后一个向
4、量的起点,可以推广到n个向量连加例1、已知向量、,求作向量+ 作法:加法的交换律和平行四边形法则问题:上题中+的结果与+是否相同? 从而得到:)向量加法的平行四边形法则(对于两个向量共线不适应) )向量加法的交换律: 向量加法的结合律: 证:6、应用举例:例二(P9495)练习:P95课后练习与提高1、一艘船从A点出发以的速度向垂直于对岸的方向行驶,船的实际航行的速度的大小为,求水流的速度.2、一艘船距对岸,以的速度向垂直于对岸的方向行驶,到达对岸时,船的实际航程为8km,求河水的流速.3、一艘船从A点出发以的速度向垂直于对岸的方向行驶,同时河水的流速为,船的实际航行的速度的大小为,方向与水流间的夹角是,求和.4、一艘船以5km/h的速度在行驶,同时河水的流速为2km/h,则船的实际航行速度大小最大是km/h,最小是km/h、已知两个力F1,F2的夹角是直角,且已知它们的合力F与F1的夹角是60,|F|=10N求F1和F2的大小.、用向量加法证明:两条对角线互相平分的四边形是平行四边形 参考答案:略8