《2022届高考:数学模拟测试卷01(原卷).pdf》由会员分享,可在线阅读,更多相关《2022届高考:数学模拟测试卷01(原卷).pdf(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022届高考数学备战热身卷一、单 选 题(本题共8 小题,每小题5 分,共 40分。在每小题给出的选项中,有一项符合题目要求。)1 .(浙江省浙东北联盟(ZDB)2021-2022学年高一上学期期中数学试题)若3 e 3,/-2 ,则实数。的值等于()A.-1 B.3 C.1 D.3 或一 12.(2021浙江绍兴市柯桥区教师发展中心模拟预测)已知a e R,若复数+H(i是虚数单位)是纯虚数,贝 心=()A.0 B.1 C.-1 D.21-9V3.(2021.海南.模拟预测)函数f(x)=3、(x +)的部分图象大致为()4.(2021.全国模拟预测)已知首项为13的等差数列 q 的前项和
2、为S“,且邑,工,5,+12成等差数列.若S,“=臬,且加W3 则m+Z=()A.8 B.10 C.12 D.145.(2021福建省龙岩第一中学模拟预测)若实数,b,c 满足2“=嗨 匕=叱 =&,其中左 (1,2),则下列结论正确的是()A.ah be B.log b log,c C.a logfc c D.cbba6.(2021 四川凉山彝族自治州教育科学研究所一模(理)设 A,B是两个事件,且 B 发生A 必定发生,0 P(A)l,0 P(8)l,给出下列各式,其中正确的是()A.P(A+B)=尸(8)B.P(B|A)=(寤 C.尸(刈 8)=1D.P(AB)=P(A),fsin 2T
3、TX,X0若/(X)在区间(-4,+力)内恰有5 个零点,则。的取值范围是()7 八 5 1 1 1 7 Q(5 (3 7 5 1 1、2 e;x j n x z +w l n 占 逅,则其中正确的结论个数是()二、多 选 题(本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,有选错的得0分,部分选对的得2分。)9.(20 21 广东深圳市龙岗区德琳学校高一阶段练习)设有下面四个命题:Pi:若复数z满足z2 eR,则z e R;P2:若复数z满足z e R,则z2eR;P3:若复数Z1,Z2满足Z1,Z2 e R,则平26/?;P&:若复数4/2满
4、足z e R,则其中的真命题为(Z,Z2 C R.A.PiB.p2C.P3D.p&1 0.(20 21 福建厦门一中高一期中)已知连续函数 x)满足:V x,y e R,则有/(x+y)=/(x)+/(y)-l,当x 0 时,/(1)=-2,则以下说法中正确的是()A.“X)的图象关于(0,1)对称B./(4 x)=4/(x)-4C.“X)在-3,3 上的最大值是1 0D.不等式/(3 巧-2/(耳 3 x)+4 的解集为卜|x 6 0)的左、右焦点分别为月,外,过 6 作倾斜角为30。的直线,与以坐标原点。为圆心、椭圆半焦距为半径的圆交于点A(不同于点6),与椭圆C 在第一象限交于点B,若
5、丽=g(质+西),则椭圆C 的离心率为16.(2021.吉林冻北师大附中模拟预测(理)在四棱锥S-A8CD中,已知S4,底面ABCD,AB/CD,AB AD,AB=2贬,CD=AD=4,M 是平面 SAZ)内的动点,且满足ZCMD=Z B M A,则当四棱锥M-A 8C D 的体积最大时,三棱锥M-A C D 外接球的表面积为.四、解 答 题(本题共6 小题,共 70分。第 17题 10分,其余每题12分.解答应写出文字说明、证明过程或演算步骤。)17.(2021.浙江 绍兴市柯桥区教师发展中心模拟预测)设函数/(x)=sin x-6 c o sx(x e R).(1)求函数y =的最小正周期
6、;(2)求函数y =/(x)F(x+)在0,y上的最小值.1 8 .(2 0 2 1全国全国模拟预测)已知数列 q 的前项和为5,且S,M=4%,J N 4=1.(1)在下列三个结论中选择一个进行证明,并求 4的通项公式.数列 整 是等差数列;数列 an+-2a是等比数列;数歹I S+1-25“是等比数列.s(2)记线 二 音,求数列 ,的前项和却1 十1注:如果选择多个结论分别证明,按第一个证明计分.1 9 .如图,在四棱锥P-AB C。中,底面A B C D是矩形,侧棱P。J_底面AB C。,P D=DC,E是P C的中点.(1)求证:以 平面B D E;(2)若直线8。与平面P 8 C所
7、成的角为3 0。,求二面角C-依-D的大小.20.(20 21 全国全国模拟预测)“十四五”是我国全面建成小康社会、实现第一个百年奋斗目标之后,乘势而上开启全面建设社会主现代化国家新征程、向第二个百年奋斗目标进军的第一个五年,实施时间为20 21 年到20 25 年.某企业为响应国家号召,汇聚科研力量,加强科技创新,准备加大研发资金投入,为了解年研发资金投入额x (单位:亿元)对年盈利额V(单位:亿元)的影响,通过对“十二五 和十三五 规划发展1 0 年期间年研发资金投入额和年盈利额 (7 =1,2,L ,1 0)数据进行分析,建立了两个函数模型:y=a+J3x 其中a,p,X,t均为常数,e
8、 为自然对数的底数令%=X:,匕=In (i =l,2,L ,1 0),经计算得如下数据:x =26,y =21 5,=6 8(),u =5.3 6 ,(x,.-x)=1 0 0,(,-)=225 0 0,(M;-M)(y,.-j)=26 0,=4,i=I 6 0)的上顶点为8(0,1),过点(啦,0)且与X 轴垂直的直线被截得的线段长为竽.(1)求椭圆r的标准方程;(2)设直线4 交椭圆于异于点8 的P,。两点,以P Q 为直径的圆经过点8,线段P Q 的中垂线,2与X 轴的交点为(内,0),求X。的取值范围.22.(2022江苏盐城一模)设函数/(另;与 山+丁+奴?一 2 z r,a w R.(1)求函数/(x)在x=l 处的切线方程;(2)若公三为函数,f(x)的两个不等于1 的极值点,设尸(丙,%),。(孙电),记直线P。的斜率为4,求证:k+2 xt+x2.