《初中数学几何知识点总结5篇.docx》由会员分享,可在线阅读,更多相关《初中数学几何知识点总结5篇.docx(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 初中数学几何知识点总结5篇 1、把握最根本的五种尺规作图 、作一条线段等于已知线段。 、作一个角等于已知角。 、平分已知角。 、经过一点作已知直线的垂线。 、作线段的垂直平分线。 2、把握课本中各章要求的作图题 、依据条件作任意的三角形、等要素那角性、直角三角形。 、依据给出条件作一般四边形、平行四边形、矩形、菱形、正方形、梯形等。 、作已知图形关于一点、一条直线对称的.图形。 、会作三角形的外接圆、内切圆。 、平分已知弧。 、作两条线段的比例中项。 、作正三角形、正四边形、正六边形等。 初中数学几何学问点总结2 1、三角形、平行四边形和梯形的计算 用到的定理主要有三角形全等定理,中位线定理
2、,等腰三角形、直角三角形、正三角形及各种平行四边形的性质等定理。关于梯形中线段计算主要依据梯形中位线定理及等腰梯形、直角梯形的性质定理等。 2、有关圆的线段计算的主要依据 、切线长定理 、圆切线的性质定理。 、垂径定理。 、圆外切四边形两组对边的和相等。 、两圆外切时圆心距等于两圆半径之和,两圆内切时圆心距等于两半径之差。 3、直角三角形边的计算 直角三角形边长的计算应用最广,其理论依据主要是勾股定理和特别角三角形的.性质及锐角三角函数等。 4、成比例线段长度的求法 、平行线分线段成比例定理; 、相像形对应线段的比等于相像比; 、射影定理; 、相交弦定理及推论,切割线定理及推论; 、正多边形的
3、边和其他线段计算转化为特别三角形。 初中数学几何学问点总结3 1、四边形的.面积公式 、SABCD = ah 、S菱形= 1/2ab (a、b为对角线) 、S梯形= 1/2(a + b)h = mh (m为中位线) 2、三角形的面积公式 、S = 1/2 ah 、S = 1/2 Pr(P为三角形周长,r为三角形内切圆的半径) 3、 S正多边形= 1/2 P nr n = 1/2n a nr n 4、 S圆=R2 5、S扇形= n= 1/2LR 6、S弓形= S扇-S 初中数学几何学问点总结4 1、过两点有且只有一条直线 2、两点之间线段最短 3、同角或等角的补角相等 4、同角或等角的余角相等
4、5、过一点有且只有一条直线和已知直线垂直 6、直线外一点与直线上各点连接的全部线段中,垂线段最短 7、平行公理经过直线外一点,有且只有一条直线与这条直线平行 8、假如两条直线都和第三条直线平行,这两条直线也相互平行 9、同位角相等,两直线平行 10、内错角相等,两直线平行 11、同旁内角互补,两直线平行 12、两直线平行,同位角相等 13、两直线平行,内错角相等 14、两直线平行,同旁内角互补 15、定理三角形两边的和大于第三边 16、推论三角形两边的差小于第三边 17、三角形内角和定理三角形三个内角的和等于180 18、推论1直角三角形的”两个锐角互余 19、推论2三角形的一个外角等于和它不
5、相邻的两个内角的和 20、推论3三角形的一个外角大于任何一个和它不相邻的内角 初中数学几何学问点总结5 三角形的学问点 1、三角形:由不在同始终线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2、三角形的分类 3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。 4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。 5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。 6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。 7、高线、中线、角平分线的意义和做法
6、 8、三角形的稳定性:三角形的外形是固定的,三角形的这共性质叫三角形的稳定性。 9、三角形内角和定理:三角形三个内角的和等于180 推论1直角三角形的两个锐角互余 推论2三角形的一个外角等于和它不相邻的两个内角和 推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半 10、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。 11、三角形外角的性质 (1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线; (2)三角形的一个外角等于与它不相邻的两个内角和; (3)三角形的一个外角大于与它不相邻的任一内角; (4)三角形的外角
7、和是360。 四边形(含多边形)学问点、概念总结 一、平行四边形的定义、性质及判定 1、两组对边平行的四边形是平行四边形。 2、性质: (1)平行四边形的对边相等且平行 (2)平行四边形的对角相等,邻角互补 (3)平行四边形的对角线相互平分 3、判定: (1)两组对边分别平行的四边形是平行四边形 (2)两组对边分别相等的四边形是平行四边形 (3)一组对边平行且相等的四边形是平行四边形 (4)两组对角分别相等的四边形是平行四边形 (5)对角线相互平分的四边形是平行四边形 4、对称性:平行四边形是中心对称图形 二、矩形的定义、性质及判定 1、定义:有一个角是直角的平行四边形叫做矩形 2、性质:矩形
8、的四个角都是直角,矩形的对角线相等 3、判定: (1)有一个角是直角的平行四边形叫做矩形 (2)有三个角是直角的四边形是矩形 (3)两条对角线相等的平行四边形是矩形 4、对称性:矩形是轴对称图形也是中心对称图形。 三、菱形的定义、性质及判定 1、定义:有一组邻边相等的平行四边形叫做菱形 (1)菱形的四条边都相等 (2)菱形的对角线相互垂直,并且每一条对角线平分一组对角 (3)菱形被两条对角线分成四个全等的直角三角形 (4)菱形的面积等于两条对角线长的积的一半 2、s菱=争6(n、6分别为对角线长) 3、判定: (1)有一组邻边相等的平行四边形叫做菱形 (2)四条边都相等的四边形是菱形 (3)对
9、角线相互垂直的平行四边形是菱形 4、对称性:菱形是轴对称图形也是中心对称图形 四、正方形定义、性质及判定 1、定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形 2、性质: (1)正方形四个角都是直角,四条边都相等 (2)正方形的两条对角线相等,并且相互垂直平分,每条对角线平分一组对角 (3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形 (4)正方形的对角线与边的夹角是45 (5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形 3、判定: (1)先判定一个四边形是矩形,再判定出有一组邻边相等 (2)先判定一个四边形是菱形,再判定出有一个角是直角 4、对称性:正方
10、形是轴对称图形也是中心对称图形 五、梯形的定义、等腰梯形的性质及判定 1、定义:一组对边平行,另一组对边不平行的四边形是梯形。两腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形 2、等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等 3、等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形 4、对称性:等腰梯形是轴对称图形 六、三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半。 七、线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中
11、线的交点。 八、依次连接任意一个四边形各边中点所得的四边形叫中点四边形。 九、多边形 1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。 2、多边形的内角:多边形相邻两边组成的角叫做它的内角。 3、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。 4、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。 5、多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。 6、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
12、7、平面镶嵌:用一些不重叠摆放的多边形把平面的一局部完全掩盖,叫做用多边形掩盖平面。 8、公式与性质 多边形内角和公式:n边形的内角和等于(n-2)180 9、多边形外角和定理: (1)n边形外角和等于n180-(n-2)180=360 (2)边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n180 10、多边形对角线的条数: (1)从n边形的一个顶点动身可以引(n-3)条对角线,把多边形分词(n-2)个三角形 (2)n边形共有n(n-3)/2条对角线 圆学问点、概念总结 1、不在同始终线上的三点确定一个圆。 2、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧 推论
13、1(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 弦的垂直平分线经过圆心,并且平分弦所对的两条弧 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 推论2圆的两条平行弦所夹的弧相等 3、圆是以圆心为对称中心的中心对称图形 4、圆是定点的距离等于定长的点的集合 5、圆的内部可以看作是圆心的距离小于半径的点的集合 6、圆的”外部可以看作是圆心的距离大于半径的点的集合 7、同圆或等圆的半径相等 8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 9、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等 10、推论在同圆或等圆中,假如两个圆
14、心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。 11、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 12、直线L和O相交d 直线L和O相切d=r 直线L和O相离dr 13、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线 14、切线的性质定理:圆的切线垂直于经过切点的半径 15、推论1经过圆心且垂直于切线的直线必经过切点 16、推论2经过切点且垂直于切线的直线必经过圆心 17、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角 18、圆的外切四边形的两组对边的和相等,外角等于内对角
15、 19、假如两个圆相切,那么切点肯定在连心线上 20、两圆外离dR+r 两圆外切d=R+r 两圆相交R-rr) 两圆内切d=R-r(Rr)两圆内含dr) 21、定理:相交两圆的连心线垂直平分两圆的公共弦 22、定理:把圆分成n(n3): (1)依次连结各分点所得的多边形是这个圆的内接正n边形 (2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 23、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 24、正n边形的每个内角都等于(n-2)180/n 25、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 26、正n边形的面积Sn=pn
16、rn/2p表示正n边形的周长 27、正三角形面积3a/4a表示边长 28、假如在一个顶点四周有k个正n边形的角,由于这些角的和应为360,因此k(n-2)180/n=360化为(n-2)(k-2)=4 29、弧长计算公式:L=n兀R/180 30、扇形面积公式:S扇形=n兀R2/360=LR/2 31、内公切线长=d-(R-r)外公切线长=d-(R+r) 32、定理:一条弧所对的圆周角等于它所对的圆心角的一半 33、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 34、推论2半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径 35、弧长公式l=a*ra是圆心角的弧度数r0扇形面积公式s=1/2*l*r