初中数学公式总结2篇.docx

上传人:碎****木 文档编号:96009794 上传时间:2023-09-06 格式:DOCX 页数:25 大小:25.98KB
返回 下载 相关 举报
初中数学公式总结2篇.docx_第1页
第1页 / 共25页
初中数学公式总结2篇.docx_第2页
第2页 / 共25页
点击查看更多>>
资源描述

《初中数学公式总结2篇.docx》由会员分享,可在线阅读,更多相关《初中数学公式总结2篇.docx(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 初中数学公式总结2篇 1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等 5过一点有且只有一条直线和已知直线垂直 6直线外一点与直线上各点连接的全部线段中,垂线段最短 7平行公理经过直线外一点,有且只有一条直线与这条直线平行8假如两条直线都和第三条直线平行,这两条直线也相互平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补 15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边 17三角形内角和定理三角形三个内角的和等于18018推论1

2、直角三角形的两个锐角互余 19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等 22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(SSS)有三边对应相等的两个三角形全等 26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等 28定理2到一个角的两边的距离一样的点,在这个角的

3、平分线上29角的平分线是到角的两边距离相等的全部点的集合 30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31推论1等腰三角形顶角的平分线平分底边并且垂直于底边 32等腰三角形的顶角平分线、底边上的中线和底边上的高相互重合33推论3等边三角形的各角都相等,并且每一个角都等于60 34等腰三角形的判定定理假如一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60的等腰三角形是等边三角形37在直角三角形中,假如一个锐角等于30那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半 39

4、定理线段垂直平分线上的点和这条线段两个端点的距离相等 40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的全部点的集合42定理1关于某条直线对称的两个图形是全等形 43定理2假如两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3两个图形关于某直线对称,假如它们的对应线段或延长线相交,那么交点在对称轴上45逆定理假如两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2 47勾股定理的逆定理假如三角形的三边长a、b、

5、c有关系a2+b2=c2,那么这个三角形是直角三角形48定理四边形的内角和等于36049四边形的外角和等于360 50多边形内角和定理n边形的内角的和等于(n-2)18051推论任意多边的外角和等于360 52平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等 55平行四边形性质定理3平行四边形的对角线相互平分 56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线相互平分的四边形是平行四边形59平行四边形判定定理4一组对边平行

6、相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等 62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等 65菱形性质定理2菱形的对角线相互垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(ab)267菱形判定定理1四边都相等的四边形是菱形 68菱形判定定理2对角线相互垂直的平行四边形是菱形 69正方形性质定理1正方形的四个角都是直角,四条边都相等 70正方形性质定理2正方形的两条对角线相等,并且相互垂直平分,每条对角线平分一组对角71定理1关于中心

7、对称的两个图形是全等的 72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理假如两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 74等腰梯形性质定理等腰梯形在同一底上的。两个角相等75等腰梯形的两条对角线相等 76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形 78平行线等分线段定理假如一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等 79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边 81三角形中

8、位线定理三角形的中位线平行于第三边,并且等于它的一半 82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)2S=Lh 83(1)比例的根本性质假如a:b=c:d,那么ad=bc假如ad=bc,那么a:b=c:d 84(2)合比性质假如ab=cd,那么(ab)b=(cd)d 85(3)等比性质假如ab=cd=mn(b+d+n0),那么(a+c+m)(b+d+n)=ab 86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例 87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 88定理假如一条直线截三角形的两边(或两边的延长线)所

9、得的对应线段成比例,那么这条直线平行于三角形的第三边 89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相像91相像三角形判定定理1两角对应相等,两三角形相像(ASA)92直角三角形被斜边上的高分成的两个直角三角形和原三角形相像93判定定理2两边对应成比例且夹角相等,两三角形相像(SAS)94判定定理3三边对应成比例,两三角形相像(SSS) 95定理假如一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相像96性质

10、定理1相像三角形对应高的比,对应中线的比与对应角平分线的比都等于相像比 97性质定理2相像三角形周长的比等于相像比 98性质定理3相像三角形面积的比等于相像比的平方 99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值 100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值 101圆是定点的距离等于定长的点的集合 102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等 105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 106和已知线段两个端点的距离

11、相等的点的轨迹,是着条线段的垂直平分线 107到已知角的两边距离相等的点的轨迹,是这个角的平分线 108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线 109定理不在同始终线上的三点确定一个圆。 110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧弦的垂直平分线经过圆心,并且平分弦所对的两条弧平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形 114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相

12、等,所对的弦的弦心距相等 115推论在同圆或等圆中,假如两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半 117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径 119推论3假如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121直线L和O相交dr直线L和O相切d=r直线L和O相离dr 122切线的判定定理经过半径的外端并且垂直

13、于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1经过圆心且垂直于切线的直线必经过切点125推论2经过切点且垂直于切线的直线必经过圆心 126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等 128弦切角定理弦切角等于它所夹的弧对的圆周角 129推论假如两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等 131推论假如弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项 132切割线定理从圆外一点引圆的切线和

14、割线,切线长是这点到割线与圆交点的两条线段长的比例中项 133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134假如两个圆相切,那么切点肯定在连心线上135两圆外离dR+r两圆外切d=R+r两圆相交R-rdR+r(Rr)两圆内切d=R-r(Rr)两圆内含dR-r(Rr)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n3):依次连结各分点所得的多边形是这个圆的内接正n边形经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n

15、-2)180n 140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn2p表示正n边形的周长142正三角形面积3a4a表示边长 143假如在一个顶点四周有k个正n边形的角,由于这些角的和应为360,因此k(n-2)180n=360化为(n-2)(k-2)=4144弧长计算公式:L=n兀R180 145扇形面积公式:S扇形=n兀R2360=LR2146内公切线长=d-(R-r)外公切线长=d-(R+r)147完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2148平方差公式:(a+b)(a-b)=a2-b2(还有一些,大

16、家帮补充吧) 有用工具:常用数学公式 公式分类公式表达式 乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2) 三角不等式|a+b|a|+|b|a-b|a|+|b|a|b-bab |a-b| |a|-|b|-|a|a|a| 一元二次方程的解-b+(b2-4ac)/2a-b-(b2-4ac)/2a 根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理 判别式 b2-4ac=0注:方程有两个相等的实根b2-4ac0注:方程有两个不等的实根 b2-4ac抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2

17、py 直棱柱侧面积S=c*h斜棱柱侧面积S=c“*h 正棱锥侧面积S=1/2c*h“正棱台侧面积S=1/2(c+c“)h“圆台侧面积S=1/2(c+c“)l=pi(R+r)l球的外表积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l 弧长公式l=a*ra是圆心角的弧度数r0扇形面积公式s=1/2*l*r 锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S“L注:其中,S“是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h 扩展阅读: 初中数学公式总结 篇二 三角形的面积底高2。公式S=ah2正方形的面

18、积边长边长公式S=aa长方形的面积长宽公式S=ab平行四边形的面积底高公式S=ah梯形的面积(上底+下底)高2公式S=(a+b)h2内角和:三角形的内角和180度。长方体的体积长宽高公式:V=abh长方体(或正方体)的体积底面积高公式:V=abh正方体的体积棱长棱长棱长公式:V=aaa圆的周长直径公式:Ld2r圆的面积半径半径公式:Sr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=dh2rh圆柱的外表积:圆柱的外表积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2r2 圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh圆锥的体积1/3底面

19、积高。公式:V=1/3Sh 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 分数的乘法则:用分子的积做分子,用分母的积做分母。分数的除法则:除以一个数等于乘以这个数的倒数。读懂理解会应用以下定义定理性质公式一、算术方面 1、加法交换律:两数相加交换加数的位置,和不变。 2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。 3、乘法交换律:两数相乘,交换因数的位置,积不变。 4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。 5、乘法安排律:两个数的和

20、同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)525+45 6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)一样的倍数,商不变。O除以任何不是O的数都得O。 简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参与运算,有几个零都落下,添在积的末尾。 7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的根本性质:等式两边同时乘以(或除以)一个一样的数,等式仍旧成立。 8、什么叫方程式?答:含有未知数的等式叫方程式。 9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。 学会

21、一元一次方程式的例法及计算。即例出代有的算式并计算。10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。 11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 12、分数大小的比拟:同分母的分数相比拟,分子大的大,分子小的小。异分母的分数相比拟,先通分然后再比拟;若分子一样,分母大的反而小。 13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。15、分数除以整数(0除外),等于分数乘以这个整数的倒数。16、真分数:分子比分母小的分数叫做真分数。

22、 17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。18、带分数:把假分数写成整数和真分数的形式,叫做带分数。19、分数的根本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。 20、一个数除以分数,等于这个数乘以分数的倒数。21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。数量关系计算公式方面1、单价数量总价2、单产量数量总产量3、速度时间路程4、工效时间工作总量5、加数+加数和一个加数和另一个加数 被减数减数差减数被减数差被减数减数差因数因数积一个因数积另一个因数被除数除数商除数被除数商被除数商除数有余数的除法:被除数商除数+余数一

23、个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:905690(56) 6、1公里1千米1千米1000米 1米10分米1分米10厘米1厘米10毫米 1平方米100平方分米1平方分米100平方厘米1平方厘米100平方毫米 1立方米1000立方分米1立方分米1000立方厘米1立方厘米1000立方毫米 1吨1000千克1千克=1000克=1公斤=1市斤1公顷10000平方米。1亩666.666平方米。1升1立方分米1000毫升1毫升1立方厘米 7、什么叫比:两个数相除就叫做两个数的比。如:25或3:6或1/3比的前项和后项同时乘以或除以一个一样的数(0除外),比值不变。

24、8、什么叫比例:表示两个比相等的式子叫做比例。如3:69:189、比例的根本性质:在比例里,两外项之积等于两内项之积。10、解比例:求比例中的未知项,叫做解比例。如3:9:18 11、正比例:两种相关联的量,一种量变化,另一种量也随着化,假如这两种量中相对应的的比值(也就是商k)肯定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k(k肯定)或kx=y 12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,假如这两种量中相对应的两个数的积肯定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:xy=k(k肯定)或k/x=y百分数:表示一个数是另一个数的百

25、分之几的数,叫做百分数。百分数也叫做百分率或百分比。 13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100就行了。 把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。 14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保存三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100就行了。把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。15、要学会把小数化成分数和把分数化成小数的化发。16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大

26、公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)17、互质数:公约数只有1的两个数,叫做互质数。 18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。 19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数) 20、约分:把一个分数化成同它相等,但分子、分母都比拟小的分数,叫做约分。(约分用最大公约数) 21、最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最终,得数必需化成最简分数。 个位上是0、2、4、6、8的数,都能被2整除,即能用2进展 约分。个位上是0

27、或者5的数,都能被5整除,即能用5进展约分。在约分时应留意利用。22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。23、质数(素数):一个数,假如只有1和它本身两个约数,这样的数叫做质数(或素数)。24、合数:一个数,假如除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。 28、利息本金利率时间(时间一般以年或月为单位,应与利率的单位相对应) 29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。 30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。 31、循环小数:一个小数,从小数局部的某一

28、位起,一个数字或几个数字依次不断的重复消失,这样的小数叫做循环小数。如3.14141432、不循环小数:一个小数,从小数局部起,没有一个数字或几个数字依次不断的重复消失,这样的小数叫做不循环小数。如3.141592654 33、无限不循环小数:一个小数,从小数局部起到无限位数,没有一个数字或几个数字依次不断的重复消失,这样的小数叫做无限不循环小数。如3.14159265434、什么叫代数?代数就是用字母代替数。 35、什么叫代数式?用字母表示的式子叫做代数式。如:3x=(a+b)*c 初中数学学问点归纳。 有理数的加法运算 同号两数来相加,肯定值加不变号。 异号相加大减小,大数打算和符号。 互

29、为相反数求和,结果是零须记好。【注】“大”减“小”是指肯定值的大小。 有理数的减法运算 减正等于加负,减负等于加正。有理数的乘法运算符号法则 同号得正异号负,一项为零积是零。合并同类项 说起合并同类项,法则千万不能忘。只求系数代数和,字母指数留原样。去、添括号法则 去括号或添括号,关键要看连接号。扩号前面是正号,去添括号不变号。括号前面是负号,去添括号都变号。解方程 已知未知闹分别,分别要靠移完成。移加变减减变加,移乘变除除变乘。平方差公式 两数和乘两数差,等于两数平方差。积化和差变两项,完全平方不是它。完全平方公式 二数和或差平方,绽开式它共三项。首平方与末平方,首末二倍中间放。和的平方加联

30、结,先减后加差平方。完全平方公式 首平方又末平方,二倍首末在中心。和的平方加再加,先减后加差平方。解一元一次方程 先去分母再括号,移项变号要记牢。同类各项去合并,系数化“1”还没好。求得未知须检验,回代值等才算了。解一元一次方程 先去分母再括号,移项合并同类项。系数化1还没好,精确无误不白忙。因式分解与乘法 和差化积是乘法,乘法本身是运算。积化和差是分解,因式分解非运算。因式分解 两式平方符号异,因式分解你别怕。两底和乘两底差,分解结果就是它。两式平方符号同,底积2倍坐中心。因式分解能与否,符号上面有文章。 同和异差先平方,还要加上正负号。 同正则正负就负,异则需添幂符号。因式分解 一提二套三

31、分组,十字相乘也上数。四种方法都不行,拆项添项去重组。重组无望试求根,换元或者算余数。多种方法敏捷选,连乘结果是根底。同式相乘若消失,乘方表示要记住。【注】一提(提公因式)二套(套公式) 因式分解 一提二套三分组,叉乘求根也上数。五种方法都不行,拆项添项去重组。对症下药稳又准,连乘结果是根底。二次三项式的因式分解 先想完全平方式,十字相乘是其次。两种方法行不通,求根分解去尝试。比和比例 两数相除也叫比,两比相等叫比例。外项积等内项积,等积可化八比例。分别交换内外项,统统都要叫更比。同时交换内外项,便要称其为反比。前后项和比后项,比值不变叫合比。前后项差比后项,组成比例是分比。两项和比两项差,比

32、值相等合分比。前项和比后项和,比值不变叫等比。解比例 外项积等内项积,列出方程并解之。求比值 由已知去求比值,多种途径可利用。活用比例七性质,变量替换也走红。消元也是好方法,殊途同归会变通。正比例与反比例 商定变量成正比,积定变量成反比。正比例与反比例 变化过程商肯定,两个变量成正比。变化过程积肯定,两个变量成反比。推断四数成比例 四数是否成比例,递增递减先排序。两端积等中间积,四数肯定成比例。推断四式成比例 四式是否成比例,生或降幂先排序。两端积等中间积,四式便可成比例。比例中项 成比例的四项中,外项一样会遇到。有时内项会一样,比例中项少不了。比例中项很重要,多种场合会遇到。成比例的四项中,

33、外项一样有不少。有时内项会一样,比例中项消失了。同数平方等异积,比例中项无处逃。根式与无理式 表示方根代数式,都可称其为根式。用平方差公式因式分解 异号两个平方项,因式分解有方法。两底和乘两底差,分解结果就是它。用完全平方公式因式分解 两平方项在两端,底积2倍在中部。同正两底和平方,全负和方相反数。分成两底差平方,方正倍积要为负。两边为负中间正,底差平方相反数。一平方又一平方,底积2倍在中路。根式异于无理式,被开方式无限制。被开方式有字母,才能称为无理式。无理式都是根式,区分它们有标志。被开方式有字母,又可称为无理式。求定义域 求定义域有讲究,四项原则须留意。负数不能开平方,分母为零无意义。指

34、是分数底正数,数零没有零次幂。限制条件不唯一,满意多个不等式。求定义域要过关,四项原则须留意。负数不能开平方,分母为零无意义。分数指数底正数,数零没有零次幂。限制条件不唯一,不等式组求解集。解一元一次不等式 先去分母再括号,移项合并同类项。系数化“1”有讲究,同乘除负要变向。先去分母再括号,移项别忘要变号。同类各项去合并,系数化“1”留意了。同乘除正无防碍,同乘除负也变号。解一元一次不等式组 大于头来小于尾,大小不一中间找。大大小小没有解,四种状况全来了。同向取两边,异向取中间。中间无元素,无解便消失。 幼儿园小鬼当家,(同小相对取较小)敬老院以老为荣,(同大就要取较大)军营里没老没少。(大小

35、小大就是它)大大小小解集空。(小小大大哪有哇)解一元二次不等式 首先化成一般式,构造函数其次站。判别式值若非负,曲线横轴有交点。a正开口它向上,大于零则取两边。代数式若小于零,解集交点数之间。方程若无实数根,口上大零解为全。小于零将没有解,开口向下正相反。三正两底和平方,全负和方相反数。分成两底差平方,两端为正倍积负。两边若负中间正,底差平方相反数。用公式法解一元二次方程 要用公式解方程,首先化成一般式。调整系数随其后,使其成为最简比。确定参数abc,计算方程判别式。判别式值与零比,有无实根便得知。有实根可套公式,没有实根要告之。用常规配方法解一元二次方程 左未右已先分别,二系化“1”是其次。

36、一系折半再平方,两边同加没问题。左边分解右合并,直接开方去解题。该种解法叫配方,解方程时多练习。用间接配方法解一元二次方程 已知未知先分别,因式分解是其次。调整系数等互反,和差积套恒等式。完全平方等常数,间接配方显优势【注】恒等式解一元二次方程 方程没有一次项,直接开方最抱负。假如缺少常数项,因式分解没商议。b、c相等都为零,等根是零不要忘。b、c同时不为零,因式分解或配方,也可直接套公式,因题而异择良方。正比例函数的鉴别 推断正比例函数,检验当分两步走。一量表示另一量,有没有。 若有再去看取值,全体实数都需要。区分正比例函数,衡量可分两步走。一量表示另一量,是与否。 若有还要看取值,全体实数

37、都要有。正比例函数的图象与性质 正比函数图直线,经过和原点。K正一三负二四,变化趋势记心间。 K正左低右边高,同大同小向爬山。K负左高右边低,一大另小下山峦。一次函数 一次函数图直线,经过点。 K正左低右边高,越走越高向爬山。K负左高右边低,越来越低很明显。K称斜率b截距,截距为零变正函。反比例函数 反比函数双曲线,经过点。 直平之间是钝角,平周之间叫优角。 互余两角和直角,和是平角互补角。一点动身两射线,组成图形叫做角。平角反向且共线,平角之半叫直角。平角两倍成周角,小于直角叫锐角。钝角界于直平间,平周之间叫优角。和为直角叫互余,互为补角和平角。证等积或比例线段 等积或比例线段,多种途径可以

38、证。K正一三负二四,两轴是它渐近线。K正左高右边低,一三象限滑下山。K负左低右边高,二四象限如爬山。二次函数 二次方程零换y,二次函数便消失。全体实数定义域,图像叫做抛物线。抛物线有对称轴,两边单调正相反。A定开口及大小,线轴交点叫顶点。顶点非高即最低。上低下高很惹眼。假如要画抛物线,平移也可去描点,提取配方定顶点,两条途径再选择。列表描点后连线,平移规律记心间。左加右减括号内,号外上加下要减。二次方程零换y,就得到二次函数。图像叫做抛物线,定义域全体实数。A定开口及大小,开口向上是正数。肯定值大开口小,开口向下A负数。抛物线有对称轴,增减特性可看图。线轴交点叫顶点,顶点纵标最值出。假如要画抛

39、物线,描点平移两条路。提取配方定顶点,平移描点皆成图。列表描点后连线,三点大致定全图。若要平移也不难,先画根底抛物线,顶点移到新位置,开口大小随根底。【注】根底抛物线直线、射线与线段 直线射线与线段,外形相像有关联。直线长短不确定,可向两方无限延。射线仅有一端点,反向延长成直线。线段定长两端点,双向延长变直线。两点定线是共性,组成图形最常见。角 一点动身两射线,组成图形叫做角。共线反向是平角,平角之半叫直角。平角两倍成周角,小于直角叫锐角。证等积要改等比,对比图形看特征。共点共线线相交,平行截比把题证。三点定型非常像,想法来把相像证。图形明显不相像,等线段比替换证。换后结论能成立,原来命题即得

40、证。实在不行用面积,射影角分线也成。只要学习肯登攀,手脑并用无不胜。解无理方程 一无一有各一边,两无也要放两边。乘方根号无踪迹,方程可解无负担。两无一有相对难,两次乘方也好办。特别状况去换元,得解验根是必定。解分式方程 先约后乘公分母,整式方程转化出。特别状况可换元,去掉分母是出路。求得解后要验根,原留增舍别模糊。列方程解应用题 列方程解应用题,审设列解双检答。审题弄清已未知,设元直间两方法。列表画图造方程,解方程时守章法。检验准且合题意,问求同一才作答。添加帮助线 学习几何体会深,成败或许一线牵。分散条件要集中,常要添加帮助线。畏惧心理不要有,其次要把观念变。熟能生巧有规律,真知灼见靠实践。

41、图中已知有中线,倍长中线把线连。旋转构造全等形,等线段角可代换。多条中线连中点,便可得到中位线。如果知角平分线,既可两边作垂线。也可沿线去翻折,全等图形立呈现。角分线若加垂线,等腰三角形可见。角分线加平行线,等线段角位置变。已知线段中垂线,连接两端等线段。帮助线必画虚线,便与原图联系看。 两点间距离公式 同轴两点求距离,大减小数就为之。与轴等距两个点,间距求法亦如此。平面任意两个点,横纵标差先求值。差方相加开平方,距离公式要牢记。矩形的判定 任意一个四边形,三个直角成矩形;对角线等互平分,四边形它是矩形。已知平行四边形,一个直角叫矩形;两对角线若相等,理所固然为矩形。菱形的判定 任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形。已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形。 上面内容就是一秘为您整理出来的2篇初中数学公式总结,盼望可以启发您的一些写作思路。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁