《四年级数学巧数图形小学教育小学考试_小学教育-小学教育.pdf》由会员分享,可在线阅读,更多相关《四年级数学巧数图形小学教育小学考试_小学教育-小学教育.pdf(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、学习必备 欢迎下载 第 1 讲 巧数图形 数出某种图形的个数是一类有趣的图形问题。由于图形千变万化,错综复杂,所以准确地数出其中包含的某种图形的个数,可以培养我们 认真,仔细,做事耐心有条理的好习惯。要想有条理、不重复、不遗漏地 数出所要图形的个数,最常用的方法就是分类数。例 1 数出下图中共有多少条线段。分析与解:1.我们可以按照线段的左端点的位置分为 A,B,C 三类。如下图 所示,以 A 为左端点的线段有_ 条,以 B 为左端点的线段有_ 条,以 C 为左端点的线段有_ 条。所以共有_ 6(条)。2.我们也可以按照一条线段是由几条小线段构成的来分类。如下图所示,AB,BC,CD 是最基本
2、的小线段,由一条线段构成的线段有_ 条,由两条 小线段构成的线段有_ 条,由三条小线段构成的线段有_ 条。所以,共有_6(条)。由例 1 看出,数图形的分类方法可以不同,关键是分类要科学,所分的类型 要包含所有的情况,并且相互不重叠,这样才能做到不重复、不遗漏。例 2 下列各图形中,三角形的个数各是多少?分析与解:因为底边上的任何一条线段都对应一个三角形(以顶点及这条线段 学习必备 欢迎下载 的两个端点为顶点的三角形),所以各图中最大的三角形的底边所包含的线段的条数就是三角形的总个数。由前面数线段的方法知,图(1)中有三角形 123(个)。图(2)中有三角形_(个)。图(3)中有三角形_(个)
3、。图(4)中有三角形_15(个)。图(5)中有三角形_=21(个)。例 3 下列图形中各有多少个三角形?分析与解:(1)只需分别求出以 AB,ED 为底边的三角形中各有多少个三角形。以 AB 为底边的三角形 ABC 中,有三角 1236(个)。以 ED 为底边的 三角形 CDE 中,有三角形_(个)。所以共有三角形_(个)。这是以底边为标准来分类计算的方法。它的好处是可以借助“求底边线段数”而 得出三角形的个数。我们也可以以小块个数作为分类的标准来计算:图中共有 6 个小块。由 1 个小块组成的三角形有 3 个;由 2 个小块组成的三角形有 5 个;由 3 个小块组成的三角形有 1 个;由 4
4、 个小块组成的三角形有_ 个;由 6 个小块组成的三角形有_ 个。所以,共有三角形 3512112(个)。(2)如果以底边来分类计算,各种情况较复杂,因此我们采用以“小块个数”为 分类标准来计算:由 1 个小块组成的三角形有 4 个;由 2 个小块组成的三角形有_ 个;地数出其中包含的某种图形的个数可以培养我们认真仔细做事耐心有条理的好习惯要想有条理不重复不遗漏地数出所要图形的个数最常用的方法就是分类数例数出下图中共有多少条线段分析与解我们可以按照线段的左端点的位置分照一条线段是由几条小线段构成的来分类如下图所示是最基本的小线段由一条线段构成的线段有条由两条小线段构成的线段有条由三条小线段构成
5、的线段有条所以共有条由例看出数图形的分类方法可以不同关键是分类要科学所分的解因为底边上的任何一条线段都对应一个三角形以顶点及这条线段的两个端点为顶点的三角形学习必备欢迎下载所以各图中最大的三角形的底边所包含的线段的条数就是三角形的总个数由前面数线段的方法知图中有三角形个图中有学习必备 欢迎下载 由 3 个小块组成的三角形有_ 个;由 4 个小块组成的三角形有_ 个;由 6 个小块组成的三角形有_ 个。所以,共有三角形_15(个)。例 4 右图中有多少个三角形?解:假设每一个最小三角形的边长为 1。按边的长度来分类计算三角形的个数。边长为 1 的三角形,从上到下一层一层地数,有 1357=16(
6、个);边长为 2 的三角形(由_ 个小三角形组成)(注意,有一个尖朝下的三角形)有_7(个);边长为 3 的三角形有_(个);边长为 4 的三角形有_ 个。所以,共有三角形 1673127(个)。例 5 数出下页左上图中锐角的个数。分析与解:在图中加一条虚线,如下页右上图。容易发现,所要数的每个角 都对应一个三角形(这个角与它所截的虚线段构成的三角形),这就回到例 2,从而回到例 1 的问题,即所求锐角的个数,就等于从 O 点引出的 6 条射线将 虚线截得的线段的条数。虚线上线段的条数有_ 例 6 在下图中,包含“*”号的长方形和正方形共有多少个?地数出其中包含的某种图形的个数可以培养我们认真
7、仔细做事耐心有条理的好习惯要想有条理不重复不遗漏地数出所要图形的个数最常用的方法就是分类数例数出下图中共有多少条线段分析与解我们可以按照线段的左端点的位置分照一条线段是由几条小线段构成的来分类如下图所示是最基本的小线段由一条线段构成的线段有条由两条小线段构成的线段有条由三条小线段构成的线段有条所以共有条由例看出数图形的分类方法可以不同关键是分类要科学所分的解因为底边上的任何一条线段都对应一个三角形以顶点及这条线段的两个端点为顶点的三角形学习必备欢迎下载所以各图中最大的三角形的底边所包含的线段的条数就是三角形的总个数由前面数线段的方法知图中有三角形个图中有学习必备 欢迎下载 解:按包含的小块分类
8、计数(如何数一定数量的长方形小块有多少?有规则吗?)包含 1 小块的有 1 个;包含 2 小块的有_个;包含 3 小块的有 4 个;包含 4 小块的有_ 个;包含 5 小块的有 2 个;包含 6 小块的有_个;包含 8 小块的有 4 个;包含 9 小块的有_ 个;包含 10 小块的有_ 个;包含 12 小块的有 4 个;包含 15 小块的有_个。所以共有 14472643242=_(个)。练习 1.下列图形中各有多少条线段?2.下列图形中各有多少个三角形?3.下列图形中,各有多少个小于 180 的角?地数出其中包含的某种图形的个数可以培养我们认真仔细做事耐心有条理的好习惯要想有条理不重复不遗漏
9、地数出所要图形的个数最常用的方法就是分类数例数出下图中共有多少条线段分析与解我们可以按照线段的左端点的位置分照一条线段是由几条小线段构成的来分类如下图所示是最基本的小线段由一条线段构成的线段有条由两条小线段构成的线段有条由三条小线段构成的线段有条所以共有条由例看出数图形的分类方法可以不同关键是分类要科学所分的解因为底边上的任何一条线段都对应一个三角形以顶点及这条线段的两个端点为顶点的三角形学习必备欢迎下载所以各图中最大的三角形的底边所包含的线段的条数就是三角形的总个数由前面数线段的方法知图中有三角形个图中有学习必备 欢迎下载 4.下列图形中各有多少个三角形?5.下列图形中各有多少个长方形?6.
10、下列图形中,包含“*”号的三角形或长方形各有多少?7.下列图形中,不含“*”号的三角形或长方形各有几个?地数出其中包含的某种图形的个数可以培养我们认真仔细做事耐心有条理的好习惯要想有条理不重复不遗漏地数出所要图形的个数最常用的方法就是分类数例数出下图中共有多少条线段分析与解我们可以按照线段的左端点的位置分照一条线段是由几条小线段构成的来分类如下图所示是最基本的小线段由一条线段构成的线段有条由两条小线段构成的线段有条由三条小线段构成的线段有条所以共有条由例看出数图形的分类方法可以不同关键是分类要科学所分的解因为底边上的任何一条线段都对应一个三角形以顶点及这条线段的两个端点为顶点的三角形学习必备欢迎下载所以各图中最大的三角形的底边所包含的线段的条数就是三角形的总个数由前面数线段的方法知图中有三角形个图中有