《关于初中数学教案(3篇).docx》由会员分享,可在线阅读,更多相关《关于初中数学教案(3篇).docx(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 关于初中数学教案(3篇) 教学目标 1.了解代数和的概念,理解有理数加减法可以相互转化,会进展加减混合运算; 2. 通过学习一切加减法运算,都可以统一成加法运算,连续渗透数学的转化思想; 3.通过加法运算练习,培育学生的运算力量。 教学建议 (一)重点、难点分析 本节课的重点是依据运算法则和运算律精确快速地进展有理数的加减混合运算,难点是省略加号与括号的代数和的计算. 由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是由于有理数加、减混合算式都看成和式,就可敏捷运用加法运算律,
2、简化计算. (二)学问构造 (三)教法建议 1.通过习题,复习、稳固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要仔细总结、分析学生在进展有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮忙学生改正. 2.关于“去括号法则”,只要学生了解,并不要求追究所以然. 3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如 -3-4表示-3、-4两数的代数和, -4+3表示-4、+3两数的代数和, 3+4表示3和+4的代数和 等。代数和概念是把握有理数运算的一个重要概念,请教师务必赐予充分留意。 4.先把正数与
3、负数分别相加,可以使运算简便。 5.在交换加数的位置时,要连同前面的符号一起交换。如 12-5+7 应变成 12+7-5,而不能变成12-7+5。 有理数的加减混合运算(一) 一、素养教育目标 (一)学问教学点 1.了解:代数和的概念. 2.理解:有理数加减法可以相互转化. 3.应用:会进展加减混合运算. (二)力量训练点 培育学生的口头表达力量及计算的精确力量. (三)德育渗透点 通过学习一切加减法运算,都可以统一成加法运算,连续渗透数学的转化思想. (四)美育渗透点 学习了本节课就知道一切加减法运算都可以统一成加法运算.表达了数学的统一美. 二、学法引导 1.教学方法:采纳尝试指导法,表达
4、学生主体地位,每一环节,设置肯定题目进展稳固练 习,步步为营,分散难点,解决关键问题. 2.学生写法:练习查找简洁的一般性的方法练习稳固. 三、重点、难点、疑点及解决方法 1.重点:把加减混合运算算式理解为加法算式. 2.难点:把省略括号和的形式直接按有理数加法进展计算. 四、课时安排 1课时 五、教具学具预备 投影仪或电脑、自制胶片. 六、师生互动活动设计 教师提出问题学生练习争论,总结归纳加减混合运算的一般步骤,教师出示练习题,学生练习反应. 七、教学步骤 (一)创设情境,复习引入 师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目: -9+(+6);(-11)-7
5、. 师:(1)读出这两个算式. (2)“+、-”读作什么?是哪种符号? “+、-”又读作什么?是什么符号? 学生活动:口答教师提出的问题. 师连续提问:(1)这两个题目运算结果是多少? (2)(-11)-7这题你依据什么运算法则计算的? 学生活动:口答以上两题(教师订正). 师小结:减法往往通过转化成加法后来运算. 【教法说明】为了进展有理数的加减混合运算,必需先对有理数加法,特殊是有理数减法的题目进展复习,为进一步学习加减混合运算奠定根底.这里特殊指出“+、-”有时表示性质符号,有时是运算符号,为在混合运算时省略加号、括号时做必要的预备工作. 师:把两个算式-9+(+6)与(-11)-7之间
6、加上减号就成了一个题目,这个题目中既有加法又有减法,就是我们今日学习的有理数的加减混合运算.(板书课题2.7有理数的加减混合运算(1) 教学说明:由复习的题目奇妙地填“-”号,就变成了今日将学的加减混合运算内容,使学生更形象、更深刻地明白了有理数加减混合运算题目组成. (二)探究新知,讲授新课 1.讲评(-9)+(-6)-(-11)-7. (1)省略括号和的形式 师:看到这个题你想怎样做? 学生活动:自己在练习本上计算. 教师针对学生所做的方法区分优劣. 【教法说明】题目出示后,教师不急于自己讲评,而是让学生尝试,给了学生一个展现自己的时机,这时,有的学生可能是按从左到右的挨次运算,有的同学可
7、能是先把减法都转化成了加法,然后按加法的计算法则再计算?这样在不同的方法中,学生自己就会查找到简洁的、一般性的方法. 师:我们对此类题目常常采纳先把减法转化为加法,这时就成了-9,+6,+11,-7的和,加号通常可以省略,括号也可以省略,即: 原式=(-9)+(+6)+(+11)+(-7) =-9+6+11-7. 提出问题:虽然加号、括号省略了,但-9+6+11-7仍表示-9,+6,+11,-7的和,所以这个算式可以读成? 学生活动:先自己练习尝试用两种读法读,口答(教师订正). 【教法说明】教师依据学生所做的方法,准时指出最具代表性的方法来给学生指明方向,在把算式写成省略括号代数和的形式后,
8、通过让学生练习两种读法,可以加深对此算式的理解,以此来训练学生的观看力量及口头表达力量. 稳固练习:(出示投影1) 1.把以下算式写成省略括号和的形式,并把结果用两种读法读出来. (1)(+9)-(+10)+(-2)-(-8)+3; (2)+()-()-(). 2.推断 式子-7+1-5-9的正确读法是(). A.负7、正1、负5、负9; B.减7、加1、减5、减9; C.负7、加1、负5、减9; D.负7、加1、减5、减9; 学生活动:1题两个学生板演,两个学生用两种读法读出结果,其他同学自行演练,然后同桌读出相互订正,2题抢答. 【教法说明】这两题旨意在稳固怎样把加减混合运算题目都转化成加
9、法运算写成代数和的形式,这里特殊留意了代数和形式的两种读法. 2.用加法运算律计算出结果 师:既然算式能看成几个数的和,我们可以运用加法的运算律进展计算,通常同号两数放在一起分别相加. -9+6+11-7 =-9-7+6+11. 学生活动:按教师要求口答并读出结果. 稳固练习:(出示投影2) 填空: 1.-4+7-4=-_-_+_ 2.+6+9-15+3=_+_+_-_ 3.-9-3+2-4=_9_3_4_2 4._ 学生活动:争论后答复. 【教法说明】学生运用加法交换律时,很可能产生“-9+7+11-6”这样的错误,教师先让学生自己去做,然后订正,又做一组稳固练习,使学生坚固把握运用加法运算
10、律把同号数放在一起时,肯定要连同前面的符号一起交换这一学问点. 师:-9-7+6+11怎样计算? 学生活动:口答 板书 -9-7+6+11 =-16+17 =1 稳固练习:(出示投影3) 1.计算(1)-1+2-3-4+5; (2). 2.做完前面两个题目计算:(1)(+9)-(+10)+(-2)-(-8)+3; (2). 学生活动:四个同学板演,其他同学在练习本上做. 【教法说明】针对一道例题分成三局部,每一局部都有一组相应的稳固练习,这样每一步学生都把握得较坚固,这时教师肯定要总结有理数加减混合运算的方法,使分散的学问有相对的集中. 师小结:有理数加减法混合运算的题目的步骤为: 1.减法转
11、化成加法; 2.省略加号括号; 3.运用加法交换律使同号两数分别相加; 4.按有理数加法法则计算. (三)反应练习 (出示投影4) 计算:(1)12-(-18)+(-7)-15; (2). 学生活动:可采纳同桌相互测验的方法,以到达订正错误的目的. 【教法说明】这两个题目是本节课的重点.采纳测验的方式来到达准时反应. (四)归纳小结 师:1.怎样做加减混合运算题目? 2.省略括号和的形式的两种读法? 学生活动:口答. 【教法说明】小结不是教师单纯的总结,而是让学生参加答复,在学生思索答复的过程中将本节的重点学问纳入学问系统. 八、随堂练习 1.把以下各式写成省略括号的和的形式 (1)(-5)+
12、(+7)-(-3)-(+1); (2)10+(-8)-(+18)-(-5)+(+6). 2.说出式子-3+5-6+1的两种读法. 3.计算 (1)0-10-(-8)+(-2); (2)-4.5+1.8-6.5+3-4; (3). 九、布置作业 (一)必做题:1.计算:(1)-8+12-16-23; (2); (3)-40-28-(-19)+(-24)-(-32); (4)-2.7+(-3.2)-(1.8)-2.2; (二)选做题:(1)当时,哪个最大,哪个最小? (2)当时,哪个最大,哪个最小? 十、板书设计 关于初中数学教案2 学问技能目标 1、理解反比例函数的图象是双曲线,利用描点法画出反
13、比例函数的图象,说出它的性质; 2、利用反比例函数的图象解决有关问题。 过程性目标 1、经受对反比例函数图象的观看、分析、争论、概括过程,会说出它的性质; 2、探究反比例函数的图象的性质,体会用数形结合思想解数学问题。 教学过程 一、创设情境 上节的练习中,我们画出了问题1中函数的图象,发觉它并不是直线。那么它是怎么样的曲线呢?本节课,我们就来争论一般的反比例函数(k是常数,k0)的图象,探究它有什么性质。 二、探究归纳 1、画出函数的图象。 分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x0。 解 1、列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y
14、的对应值: 2、描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(6,1)、(3,2)、(2,3)等。 3、连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支。这两个分支合起来,就是反比例函数的图象。 上述图象,通常称为双曲线(hyperbola)。 提问这两条曲线会与x轴、y轴相交吗?为什么? 学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步把握画函数图象的步骤)。 学生争论、沟通以下问题,并将争论、沟通的结果回答下列问题。 1、这个函数的图象在哪两个象限?和函数的图象有什么不同? 2、
15、反比例函数(k0)的图象在哪两个象限内?由什么确定? 3、联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律? 反比例函数有以下性质: (1)当k0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而削减; (2)当k0时,函数的图象在其次、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。 注 1、双曲线的两个分支与x轴和y轴没有交点; 2、双曲线的两个分支关于原点成中心对称。 以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义? 在问题1中反映了汽车比自行车的速度快,小华
16、乘汽车比骑自行车到镇上的时间少。 在问题2中反映了在面积肯定的状况下,饲养场的一边越长,另一边越小。 三、实践应用 例1若反比例函数的图象在其次、四象限,求m的值。 分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+10,由这两个条件可解出m的值。 解由题意,得解得。 例2已知反比例函数(k0),当x0时,y随x的增大而增大,求一次函数y=kxk的图象经过的象限。 分析由于反比例函数(k0),当x0时,y随x的增大而增大,因此k0,而一次函数y=kxk中,k0,可知,图象过二、四象限,又k0,所以直线与y轴的交点在x轴的上方。 解由于反比例函数(k0),当x0时,y随x的增大而增大
17、,所以k0,所以一次函数y=kxk的图象经过一、二、四象限。 例3已知反比例函数的图象过点(1,2)。 (1)求这个函数的解析式,并画出图象; (2)若点A(5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上? 分析(1)反比例函数的图象过点(1,2),即当x=1时,y=2。由待定系数法可求出反比例函数解析式;再依据解析式,通过列表、描点、连线可画出反比例函数的图象; (2)由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原点的对称点是否在图象上。 解(1)设:反比例函数的解析式为:(k0)。 而反比例函数的图象过点(1,2),即当x=1时,y=2。 所以,k=
18、2。 即反比例函数的解析式为:。 (2)点A(5,m)在反比例函数图象上,所以, 点A的坐标为。 点A关于x轴的对称点不在这个图象上; 点A关于y轴的对称点不在这个图象上; 点A关于原点的对称点在这个图象上; 例4已知函数为反比例函数。 (1)求m的值; (2)它的图象在第几象限内?在各象限内,y随x的增大如何变化? (3)当3x时,求此函数的最大值和最小值。 解(1)由反比例函数的定义可知:解得,m=2。 (2)由于20,所以反比例函数的图象在其次、四象限内,在各象限内,y随x的增大而增大。 (3)由于在第个象限内,y随x的增大而增大, 所以当x=时,y最大值=; 当x=3时,y最小值=。
19、所以当3x时,此函数的最大值为8,最小值为。 例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米。 (1)写出用高表示长的函数关系式; (2)写出自变量x的取值范围; (3)画出函数的图象。 解(1)由于100=5xy,所以。 (2)x0。 (3)图象如下: 说明由于自变量x0,所以画出的反比例函数的图象只是位于第一象限内的一个分支。 四、沟通反思 本节课学习了画反比例函数的图象和探讨了反比例函数的性质。 1、反比例函数的图象是双曲线(hyperbola)。 2、反比例函数有如下性质: (1)当k0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在
20、每个象限内y随x的增加而削减; (2)当k0时,函数的图象在其次、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。 五、检测反应 1、在同始终角坐标系中画出以下函数的图象: (1);(2)。 2、已知y是x的反比例函数,且当x=3时,y=8,求: (1)y和x的函数关系式; (2)当时,y的值; (3)当x取何值时,? 3、若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值。 4、已知反比例函数经过点A(2,m)和B(n,2n),求: (1)m和n的值; (2)若图象上有两点P1(x1,y1)和P2(x2,y2),且x10x2,试比拟y1和y2的大小。
21、p= 关于初中数学教案3 教学目标 1、学问与技能 能应用所学的函数学问解决现实生活中的问题,会建构函数“模型”。 2、过程与方法 经受探究一次函数的应用问题,进展抽象思维。 3、情感、态度与价值观 培育变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值。 重、难点与关键 1、重点:一次函数的应用。 2、难点:一次函数的应用。 3、关键:从数形结合分析思路入手,提升应用思维。 教学方法 采纳“讲练结合”的教学方法,让学生逐步地熟识一次函数的应用。 教学过程 一、范例点击,应用所学 【例5】小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这
22、段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象。 y= 【例6】A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡。从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运总运费最少? 解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(200x)吨。B城运往C、D乡的肥料量分别为(240x)吨与(60+x)吨。y与x的关系式为:y=20x+25(200x)+15(240x)+24(60+x),即y=4x+10040(0x200)。 由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元。 拓展:若A城有肥料300吨,B城有肥料200吨,其他条件不变,又应怎样调运? 二、随堂练习,稳固深化 课本P119练习。 三、课堂总结,进展潜能 由学生自我评价本节课的表现。 四、布置作业,专题突破 课本P120习题14.2第9,10,11题。 板书设计 1、一次函数的应用例: