《2017年北京海淀中考数学真题及答案.docx》由会员分享,可在线阅读,更多相关《2017年北京海淀中考数学真题及答案.docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2017年北京海淀中考数学真题及答案一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有一个1.如图所示,点P到直线的距离是A.线段PA的长度 B. A线段PB的长度C.线段PC的长度 D.线段PD的长度2.若代数式有意义,则实数的取值范围是A. =0 B. =4 C. D. 3.右图是某几何体的展开图,该几何体是A.三棱柱 B.圆锥 C.四棱柱 D.圆柱4.实数a,b,c,d在数轴上的点的位置如图所示,则正确的结论是A. B. C. D. 5.下列图形中,是轴对称图形不是中心对称图形的是6.若正多边形的一个内角是150,则该正方形的边数是A.6 B. 12 C.
2、 16 D.187.如果,那么代数式的值是A.-3 B. -1 C. 1 D.38.下面统计图反映了我国与“一带一路”沿线部分地区的贸易情况.根据统计图提供的信息,下列推断不合理的是A.与2015年相比,2016年我国与东欧地区的贸易额有所增长B.20162016年,我国与东南亚地区的贸易额逐年增长C. 20162016年,我国与东南亚地区的贸易额的平均值超过4 200亿美元 D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多9.小苏和小林在右图的跑道上进行450米折返跑.在整个过程中, 跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如下图所示。下列
3、叙述正确的是A. 两个人起跑线同时出发,同时到达终点 B.小苏跑全程的平均速度大于小林跑全程的平均速度 C.小苏前15s跑过的路程大于小林15s跑过的路程 D.小林在跑最后100m的过程中,与小苏相遇2次10.下图显示了用计算器模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0616;随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0618;若再次用计算机模拟此实验,则当投掷次数为1 000时,“钉尖向上”的频率一定是0.620.其中合理的是A
4、. B. C. D.二、填空题(本题共18分,每小题3分)11.写出一个比3大且比4小的无理数 .12.某活动小组购买了4个篮球和5个足球,一共花费435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为 .13.如图,在ABC中,M,N分别是AC,BC的中点,若,则 .14.如图,AB为的直径,C,D为上的点,。若CAB=40,则CAD= .第15题图15.如图,在平面直角坐标系xOy中,AOB可以看成是OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由OCD得到AOB的过程: .16.下面是“作已知直角
5、三角形的外接圆”的尺规作图的过程.请回答:该尺规作图的依据是 .三、解答题(本题共72分,第1719题,每小题5分,第20题3分,第21-24题,每小题5分,第25,26题,每小题6分,第27、28题,每小题7分,第29题8分) 解答应写出文字说明,演算步骤或证明过程17计算:18.解不等式组:19.如图,在ABC中,AB=AC,A=36,BD平分ABC交AC点D。 求证:AD=BC. 20.数学家吴文俊院士非常重视古代数学家贾宪提出大“从长方形对角线上任一点作两条分别平行于两领边的直线,则所容两长方形面积相等(如图所示)”这一结论,他从这一结论出发,利用“出入相补”原理复原了海岛算经九题古证
6、. (以上材料来源于古证复原的原则、吴文俊与中国和古代世界数学泰斗刘徽)请根据上图完成这个推论的证明过程。证明:( + ) .易知, = , = .可得:.21.关于x的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k的取值范围.22.如图在四边形ABCD中,BD为一条射线,ADBC,AD=2BC,ABD=90,E为AD的中点,连接BE。(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分BAD,BC=1,求AC的长. 23.如图,在平面直角坐标系xOy中,函数(x0)图像与直线y=x-2交于点A(3,m)。(1)求k,m的值(2)已知点P(m,n)(n0
7、),经过P作平行于x轴的直线,交直线y=x-2于点M,过P点做平行于y轴的直线,交函数(x0)的图像于点N.当n=1时,判断线段PM与PN的数量关系,并述明理由;若,结合函数的图像的函数,直接写出n的取值范围.24.如图,AB是的一条弦,E是AB的中点,过点E作ECOA于点C,过点B作的切线交CE的延长线与点D.(1)求证:DB=DE。(2)若AB=12,BD=5,求的半径。25.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整。收集数据 从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲 78 8
8、6 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77乙 93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40整理、描述数据 按如下分数段整理、描述这两组样本数据:(说明:成绩80分及以上为生产技能优秀,70-79分为生产技能良好,60-69分为生产技能合格,60分以下为生产技能不合格)分析数据 两组样本数据的平均数、中位数、众数如下表所示:部门平均数中位数众数甲78.377.575乙7880.581得出结论 a.估计乙部门生产技能优秀的员工人数为 ;b.可以推断出 部门员
9、工的生产技能水平较高,理由为 .(至少从两个不同的角度说明推断的合理性).26.如图,P是所对弦AB上一动点,过点P作PMAB交于点M,连接MB,过点P作PNMB于点N。已知AB=6cm,设A,P两点间的距离为x cm,P,N两点间的距离为y cm.(当点P与点A或点B重合时,y的值为0)小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm0123456y/cm02.02.32.10.90(说明:补全表格时相关数据保留一位小数)(2)建立直角坐标系,描出以补全后的表中各对应值为
10、坐标的点,画出该函数的图像;(3)结合画出的函数图像,解决问题: 当PAN为等腰三角形时,AP的长度约为 cm.27.在平面直角坐标系xOy中,抛物线与x轴相交于A,B(点A在点B的左边),与y轴相交于C.(1)求直线BC的表达式。(2)垂直于y轴的直线l与抛物线相交于点,与直线BC交于点。若,结合函数图像,求的取值范围.28.在等腰直角ABC中,ACB=90,P是线段BC上一动点(与点B,C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QHAP于点H,交AB于点M.(1)若PAC=,求AMQ的大小(用含有的式子表示);(2)用等式表示线段MB与PQ之间的数量关系,并证明.29.对于平面直角坐标系xOy中的点P和图形M,给出如下定义:若在图形M上存在一点Q,使得P,Q两点间的距离小于或等于1,则称P为图形M的关联点.(1)当的半径为2时,在点,中,的关联点是 ;点P在直线上,若P为的关联点,求点P的横坐标的取值范围;(2)的圆心在x轴上,半径为2,直线与x轴、y轴分别交与点A,B.若线段AB上的所有点都是的关联点,直接写出圆心C的横坐标的取值范围.