《教学设计方案建筑施工组织_建筑-施工组织.pdf》由会员分享,可在线阅读,更多相关《教学设计方案建筑施工组织_建筑-施工组织.pdf(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、附件:教学设计方案模板 注:填写表格时,请您删除蓝色部分 教学设计方案 课题名称:任意角的三角函数三角函数线 姓名:刘富玲 工作单位:大城县第一中学 学科年级:高一年级 教材版本:人教版 一、教学内容分析(简要说明课题来源、学习内容、知识结构图以及学习内容的重要性)前面我们学习了角的弧度制,角弧度数的绝对值,其中是以角作为圆心角时所对弧的长,r 是圆的半径.特别地,当 r=1 时,,此时的圆称为单位圆,这样就可以用单位圆中弧的长度表示所对圆心角弧度数的绝对值,那么能否用几何图形来表示任意角的正弦、余弦、正切函数值呢?这就是我们今天一起要研究的问题.二、教学目标(从学段课程标准中找到要求,并具体
2、化为本节课的具体要求,明晰(学生懂)、具体、可操作、可以依据练习测试题)重点及难点(说明本课题的重难点)1知识目标:使学生掌握如何利用单位圆中的有向线段分别表示任意角的正弦、余弦、正切函数值,并能利用三角函数线解决一些简单的三角函数问题.2能力目标:借助几何画板让学生经历概念的形成过程,提高学生观察、发现、类比、猜想和实验探索的能力;在论坛上开展研究性学习,让学生借助所学知识自己去发现新问题,并加以解决,提高学生抽象概括、分析归纳、数学表述等基本数学思维能力.3情感目标:激发学生对数学研究的热情,培养学生勇于发现、勇于探索、勇于创新的精神;通过学生之间、师生之间的交流合作,实现共同探究、教学相
3、长的教学情境.教学重点难点:1重点:三角函数线的作法及其简单应用.2难点:利用与单位圆有关的有向线段,将任意角的正弦、余弦、正切函数值分别用它们的几何形式表示出来.三、学习者特征分析(学生对预备知识的掌握了解情况,学生在新课的学习方法的掌握情况,如何设计预习)“设置问题,探索辨析,归纳应用,延伸拓展”类比、联想,产生知识迁移;观察、实验,体验知识的形成过程;猜想、求证,达到知识的延展.四、教学过程(设计本课的学习环节,明确各环节的子目标,画出流程图)一、设置疑问,实验探索(17分钟)教学环节 教学过程 设计意图 设 置 疑 问,点明主题 前面我们学习了角的弧度制,角弧度数的绝对值,其中是以角作
4、为圆心角时所对弧的长,r 是圆的半径.特别地,当 r=1 时,,此时的圆称为单位圆,这样就可以用单位圆中弧的长度表示所对圆心角弧度数的绝对值,那么能否用几何图形来表示任意角的正弦、余弦、正切函数值呢?这就是我们今天一起要研究的问题.既可以引出单位圆,又可以使学生通过类比联想主动、快速的探索出三角函数值的几何形式.概 念 学 习,分 散 有向线段:带有方向的线段.(1)方向:按书写顺序,前者为起点,后者为终点,由起点指向终点.如:有向线段 OM,O为起点,M为终点,由O点指向 M点.相关概念的学习分散了教学难点,使学生能够更多的围绕重点展开探索和研究.刘富玲工作单位大城县第一中学学科年级高一年级
5、教材版本人教版一教学内容分析简要说明课题来源学习内容知识结构图以及学习内容的重要性前面我们学习了角的弧度制角弧度数的绝对值其中是以角作为圆心角时所对弧的长是圆用几何图形来表示任意角的正弦余弦正切函数值呢这就是我们今天一起要研究的问题二教学目标从学段课程标准中找到要求并具体化为本节课的具体要求明晰学生懂具体可操作可以依据练习测试题重点及难点说明本课题的重难点知一些简单的三角函数问题能力目标借助几何画板让学生经历概念的形成过程提高学生观察发现类比猜想和实验探索的能力在论坛上开展研究性学习让学生借助所学知识自己去发现新问题并加以解决提高学生抽象概括分析归纳数学表难 点 (动态演示)(2)数值:(只考
6、虑在坐标轴上或与坐标轴平行的有向线段)绝对值等于线段的长度,若方向与坐标轴同向,取正值;与坐标轴反向,取负值.如:OM=1,ON=-1,AP=实验探 索,辨析研讨 1.(复习提问)任意角的正弦如何定义?角的终边上任意一点 P(除端点外)的坐标是(),它与原点的距离是 r,比值叫做的正弦.思考:能否用几何图形表示出角的正弦呢?学生联想角的弧度数与弧长的转化,类比猜测:若令 r=1,则.取角的终边与单位圆的交点为 P,过点 P作轴的垂线,设垂足为 M,则有向线段 MP=.(学生分析的同时,教师用几何画板演示)请学生利用几何画板作出垂线段 MP,并改变角的终边位置,观察终边在各个位置的情形,注意有向
7、线段的方向和正弦值正负的对应.特别地,当角的终边在轴上时,有向线段MP变成一个点,记数值为 0.这条与单位圆有关的有向线段 MP叫做角的正弦线.2.思考:用哪条有向线段表示角的余弦比较合适?并说明理由.请学生用几何画板演示说明.有向线段 OM叫做角的余弦线.美国华盛顿一所大学有句名言:“我听见了,就忘记了;我看见了,就记住了;我做过了,就理解了.”要想让学生深刻理解三角函数线的概念,就应该让学生主动去探索,大胆去实践,亲身体验知识的发生和发展过程.刘富玲工作单位大城县第一中学学科年级高一年级教材版本人教版一教学内容分析简要说明课题来源学习内容知识结构图以及学习内容的重要性前面我们学习了角的弧度
8、制角弧度数的绝对值其中是以角作为圆心角时所对弧的长是圆用几何图形来表示任意角的正弦余弦正切函数值呢这就是我们今天一起要研究的问题二教学目标从学段课程标准中找到要求并具体化为本节课的具体要求明晰学生懂具体可操作可以依据练习测试题重点及难点说明本课题的重难点知一些简单的三角函数问题能力目标借助几何画板让学生经历概念的形成过程提高学生观察发现类比猜想和实验探索的能力在论坛上开展研究性学习让学生借助所学知识自己去发现新问题并加以解决提高学生抽象概括分析归纳数学表 3.如何用有向线段表示?讨论焦点:若令=1,则=AT,但是第二、三象限角的终边上没有横坐标为 1 的点,若此时取=-1的点 T,tan=-=
9、TA,有向线段的表示方法又不能统一.引导观察:当角的终边互为反向延长线时,它们的正切值有什么关系?统一认识:方案 1:在象限角的终边或其反向延长线上取=1 的点 T,则 tan=AT;方案 2:借助正弦线、余弦线以及相似三角形知识得到=.几何画板演示验证:当角的终边落在坐标轴上时,tan 与有向线段 AT的对应.这条与单位圆有关的有向线段AT叫做角的正切线.教学已经不再是把教师或学生看成孤立的个体,而是把他们的教和学看成是相互影响的辩证发展过程.在和谐的氛围中,教师和学生都处在自由状态,可以不受框框的束缚,充分表达各自的意见,在自己积极思维的同时又能感受他人不同的思维方式,从而打破自己的封闭状
10、态,进入更加广阔的领域.刘富玲工作单位大城县第一中学学科年级高一年级教材版本人教版一教学内容分析简要说明课题来源学习内容知识结构图以及学习内容的重要性前面我们学习了角的弧度制角弧度数的绝对值其中是以角作为圆心角时所对弧的长是圆用几何图形来表示任意角的正弦余弦正切函数值呢这就是我们今天一起要研究的问题二教学目标从学段课程标准中找到要求并具体化为本节课的具体要求明晰学生懂具体可操作可以依据练习测试题重点及难点说明本课题的重难点知一些简单的三角函数问题能力目标借助几何画板让学生经历概念的形成过程提高学生观察发现类比猜想和实验探索的能力在论坛上开展研究性学习让学生借助所学知识自己去发现新问题并加以解决
11、提高学生抽象概括分析归纳数学表 二、作法总结,变式演练(13分钟)教学环节 教学过程 设计意图 作法总结 正弦线、余弦线、正切线统称为三角函数线.请大家总结这三种三角函数线的作法,并用几何画板演示(一学生描述,同时用电脑演示):第一步:作出角的终边,与单位圆交于点P;第二步:过点 P作轴的垂线,设垂足为 M,得正弦线 MP、余弦线 OM;第三步:过点 A(1,0)作单位圆的切线,它与角的终边或其反向延长线的交点设为 T,得角的正切线 AT.特别注意:三角函数线是有向线段,在用字母表示这些线段时,要注意它们的方向,分清起点和终点,书写顺序不能颠倒.余弦线以原点为起点,正弦线和正切线以此线段与坐标
12、轴的公共点为起点,其中点 A为定点(1,0).及时归纳总结,加深知识的理解和记忆.变式演练,提高能力 练习:利用几何画板画出下列各角的正弦线、余弦线、正切线:(1);(2).学生先做,然后投影展示一学生的作品,并强调三角函数线的位置和方向.例 1 利用几何画板画出适合下列条件的角的终边:(1);(2);巩固练习,准确掌握三角函数线的作法.逆向思刘富玲工作单位大城县第一中学学科年级高一年级教材版本人教版一教学内容分析简要说明课题来源学习内容知识结构图以及学习内容的重要性前面我们学习了角的弧度制角弧度数的绝对值其中是以角作为圆心角时所对弧的长是圆用几何图形来表示任意角的正弦余弦正切函数值呢这就是我
13、们今天一起要研究的问题二教学目标从学段课程标准中找到要求并具体化为本节课的具体要求明晰学生懂具体可操作可以依据练习测试题重点及难点说明本课题的重难点知一些简单的三角函数问题能力目标借助几何画板让学生经历概念的形成过程提高学生观察发现类比猜想和实验探索的能力在论坛上开展研究性学习让学生借助所学知识自己去发现新问题并加以解决提高学生抽象概括分析归纳数学表(3).共同分析(1),设角的终边与单位圆交于 P(),则=,所以要作出满足的角的终边,只要在单位圆上找出纵坐标为的点 P,则射线 OP即为的终边.(几何画板动态演示)请学生分析(2)、(3),同时用几何画板演示.例 2 利用几何画板画出适合下列条
14、件的角的终边的范围,并由此写出角的集合:(1);(2)-.分析:先作出满足,的角的终边(例 1 已做),然后根据已知条件确定角终边的范围.(几何画板动态演示)答案:(1).(2).延伸:通过(1)、(2)两图形的复合又可以得出不等式组的解集:.维,灵活运用三角函数线,并为利用三角函数线求解三角函数不等式(组)作铺垫.数形结合思想表现在由数到形和由形到数两方面.将任意角的正弦、余弦、正切值分别用有向线段表示出来体现了由数到形的转化;借助三角函数线求解三刘富玲工作单位大城县第一中学学科年级高一年级教材版本人教版一教学内容分析简要说明课题来源学习内容知识结构图以及学习内容的重要性前面我们学习了角的弧
15、度制角弧度数的绝对值其中是以角作为圆心角时所对弧的长是圆用几何图形来表示任意角的正弦余弦正切函数值呢这就是我们今天一起要研究的问题二教学目标从学段课程标准中找到要求并具体化为本节课的具体要求明晰学生懂具体可操作可以依据练习测试题重点及难点说明本课题的重难点知一些简单的三角函数问题能力目标借助几何画板让学生经历概念的形成过程提高学生观察发现类比猜想和实验探索的能力在论坛上开展研究性学习让学生借助所学知识自己去发现新问题并加以解决提高学生抽象概括分析归纳数学表角函数方程和不等式又发挥了由形到数的巨大作用.五、教学策略选择与信息技术融合的设计(针对学习流程的设计的各流程,设计教与学的方式的变革,配置
16、学习资源和数字化工具,设计信息技术融合点)教师活动 预设学生活动 设计意图 1.回顾三角函数线作法.2.三角函数线是利用数形结合思想解决有关问题的重要工具,自从著名数学家欧拉提出三角函数与三角函数线的对应关系,使得对三角函数的研究大为简化,现在仍然是我们解三角不等式、比较大小、以及今后研究三角函数图像与性质的基础.巩固作业:习题 1,2 提升练习:1.已知:,那么下列命题成立的是()既能保证全体学生的巩固应用,又兼顾学有余力的 六、教学评价设计(创建量规,向学生展示他们将被如何评价(来自教师和小组其他成员的评价)。也可以创建一个自我评价表,这样学生可以用它对自己的学习进行评价)1.让计算机软件
17、和网络真正走入数学课堂,发挥它们的辅助作用.“让计算机软件和网络走入数学课堂”是提出了多年的口号,但是如何真正让多媒体在数学学习中发挥积极的作用却是我们一直在探索的问题.本节课有较广的延展面,是培养学生发现、探索、创新能力的很好素材,但是要在一节课 45 分钟时间内实现构想,对刘富玲工作单位大城县第一中学学科年级高一年级教材版本人教版一教学内容分析简要说明课题来源学习内容知识结构图以及学习内容的重要性前面我们学习了角的弧度制角弧度数的绝对值其中是以角作为圆心角时所对弧的长是圆用几何图形来表示任意角的正弦余弦正切函数值呢这就是我们今天一起要研究的问题二教学目标从学段课程标准中找到要求并具体化为本
18、节课的具体要求明晰学生懂具体可操作可以依据练习测试题重点及难点说明本课题的重难点知一些简单的三角函数问题能力目标借助几何画板让学生经历概念的形成过程提高学生观察发现类比猜想和实验探索的能力在论坛上开展研究性学习让学生借助所学知识自己去发现新问题并加以解决提高学生抽象概括分析归纳数学表课的安排提出了非常高的要求.几何画板软件的动画演示功能正好可以帮助学生做数学试验,探讨数学问题;网络论坛可以让他们充分交流,相互学习.为此,我把授课地点放在多媒体网络教室,充分发挥多媒体的优势,既丰富了三角函数线的概念,又培养了学生发现问题、解决问题的能力,探索精神、创新意识也有了相应的提高.2.不仅要让学生掌握数
19、学的基础知识,更要让他们领悟科学的研究方法.课堂教学最终是为了让学生摆脱课堂,独立学习,所以不仅要让学生掌握数学的基础知识,更要让他们领悟科学的研究方法.本节课所采用的科研式教学法体现了研究新问题的一般思路,让学生逐步领悟这种科学的研究方法,有利于他们今后能够独立地开展科研活动.3.使学生始终保持学习兴趣,快乐学数学.苏霍姆林斯基说过:“在人的内心深处,都有一种根深蒂固的需要,那就是希望自己是一个发现者和探索者.”本节课正是抓住学生的这一心理需求,充分利用互动工具,让学生动手实践、思考探索,合作交流,真正意义上做到尊重学生的创造性,挖掘学生的潜力,让他们对整个学习过程充满激情,快乐学数学!七、
20、教学课件(本节课的教学课件)如板书中含有特殊符号、图片等内容,为方便展示,可将板书以附件或图片形式上传。刘富玲工作单位大城县第一中学学科年级高一年级教材版本人教版一教学内容分析简要说明课题来源学习内容知识结构图以及学习内容的重要性前面我们学习了角的弧度制角弧度数的绝对值其中是以角作为圆心角时所对弧的长是圆用几何图形来表示任意角的正弦余弦正切函数值呢这就是我们今天一起要研究的问题二教学目标从学段课程标准中找到要求并具体化为本节课的具体要求明晰学生懂具体可操作可以依据练习测试题重点及难点说明本课题的重难点知一些简单的三角函数问题能力目标借助几何画板让学生经历概念的形成过程提高学生观察发现类比猜想和实验探索的能力在论坛上开展研究性学习让学生借助所学知识自己去发现新问题并加以解决提高学生抽象概括分析归纳数学表