《2014年湖北省黄冈市中考数学真题及答案.docx》由会员分享,可在线阅读,更多相关《2014年湖北省黄冈市中考数学真题及答案.docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2014年湖北省黄冈市中考数学真题及答案一、选择题(下列个题四个选项中,有且仅有一个是正确的每小题3分,共24分)1(3分)8的立方根是()A2B2C2D2(3分)如果与互为余角,则()A+=180B=180C=90D+=903(3分)下列运算正确的是()Ax2x3=x6Bx6x5=xC(x2)4=x6Dx2+x3=x54(3分)如图所示的几何体的主视图是()ABCD5(3分)函数y=中,自变量x的取值范围是()Ax0Bx2Cx2且x0Dx2且x06(3分)若、是一元二次方程x2+2x6=0的两根,则2+2=()A8B32C16D407(3分)如图,圆锥体的高h=2cm,底面半径r=2cm,则
2、圆锥体的全面积为()cm2A4B8C12D(4+4)8(3分)已知:在ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EFBC,交AC边于点F点D为BC上一点,连接DE、DF设点E到BC的距离为x,则DEF的面积S关于x的函数图象大致为()ABCD二、填空题(共7小题,每小题3分,共21分)9(3分)计算:|=10(3分)分解因式:(2a+1)2a2=11(3分)计算:=12(3分)如图,若ADBE,且ACB=90,CBE=30,则CAD=度13(3分)当x=1时,代数式+x的值是14(3分)如图,在O中,弦CD垂直于直径AB于点E,若BAD=30,且BE=2,则CD=15(
3、3分)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上)则剪下的等腰三角形的面积为cm2三、解答题(本大题共10小题,满分共75分)16(5分)解不等式组:,并在数轴上表示出不等式组的解集17(6分)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元问购买一块电子白板和一台投影机各需要多少元?18(6分)已知,如图所示,AB=AC,BD=CD,DEAB于点E,DFAC于点F
4、,求证:DE=DF19(6分)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为号选手和号选手代表学校参加全县汉字听写大赛(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率20(7分)如图,在RtABC中,ACB=90,以AC为直径的O与AB边交于点D,过点D作O的切线,交BC于点E(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断ABC的形状,并说明理由21(7分)某市为了增强学生体质,全面实施“学生饮用奶”营养工程某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用浠马
5、中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?22(9分)如图,已知双曲线y=与两直线y=x,y=kx(k0,且k)分别相交于A、B、C、D四点(1)当点C的坐标为(1,1)时,A、B、D
6、三点坐标分别是A(,),B(,),D(,)(2)证明:以点A、D、B、C为顶点的四边形是平行四边形(3)当k为何值时,ADBC是矩形23(7分)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号已知A、B两船相距100(+1)海里,船C在船A的北偏东60方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75方向上(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号)(2)已知距观测点D处100海里范围内有暗礁若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:1.41,1.73)24(
7、9分)某地实行医疗保险(以下简称“医保”)制度医保机构规定:一:每位居民年初缴纳医保基金70元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用:居民个人当年治病所花费的医疗费医疗费的报销方法不超过n元的部分全部由医保基金承担(即全部报销)超过n元但不超过6000元的部分个人承担k%,其余部分由医保基金承担超过6000元的部分个人承担20%,其余部分由医保基金承担 如果设一位居民当年治病花费的医疗费为x元,他个人实际承担的医疗费用(包括医疗费中个人承担部分和年初缴纳的医保基金)记为y元(1)当0xn时,y=70;当nx6000时,y=
8、(用含n、k、x的式子表示)(2)表二是该地A、B、C三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n、k的值表二:居民ABC某次治病所花费的治疗费用x(元)4008001500个人实际承担的医疗费用y(元)70190470(3)该地居民周大爷2013年治病所花费的医疗费共32000元,那么这一年他个人实际承担的医疗费用是多少元?25(13分)已知:如图,在四边形OABC中,ABOC,BCx轴于点C,A(1,1),B(3,1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0t2),
9、OPQ与四边形OABC重叠部分的面积为S(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将OPQ绕着点P按逆时针方向旋转90,是否存在t,使得OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式2014年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题(下列个题四个选项中,有且仅有一个是正确的每小题3分,共24分)1(3分)(2014黄冈)8的立方根是()A2B2C2D【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可【解答】解:2的立方等于8,8
10、的立方根等于2故选:A【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方由开立方和立方是互逆运算,用立方的方法求这个数的立方根注意一个数的立方根与原数的性质符号相同2(3分)(2014黄冈)如果与互为余角,则()A+=180B=180C=90D+=90【分析】根据互为余角的定义,可以得到答案【解答】解:如果与互为余角,则+=900故选:D【点评】此题主要考查了互为余角的性质,正确记忆互为余角的定义是解决问题的关键3(3分)(2014黄冈)下列运算正确的是()Ax2x3=x6Bx6x5=xC(x2)4=x6Dx2+x3=x5【分析】根据同底数幂的乘法和除
11、法法则可以解答本题【解答】解:Ax2x3=x5,故A错误;Bx6x5=x,故B正确;C(x2)4=x8,故C错误;Dx2+x3不能合并,故D错误故选:B【点评】主要考查同底数幂相除底数不变指数相减,同底数幂相乘底数不变指数相加,熟记定义是解题的关键4(3分)(2014黄冈)如图所示的几何体的主视图是()ABCD【分析】根据从正面看得到的图形是主视图,可得答案【解答】解:从正面看,象一个大梯形减去一个小梯形,故选:D【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图5(3分)(2014黄冈)函数y=中,自变量x的取值范围是()Ax0Bx2Cx2且x0Dx2且x0【分析】根据被开方数
12、大于等于0,分母不等于0列式计算即可得解【解答】解:由题意得,x20且x0,x2故选:B【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负6(3分)(2014黄冈)若、是一元二次方程x2+2x6=0的两根,则2+2=()A8B32C16D40【分析】根据根与系数的关系得到+=2,=6,再利用完全平方公式得到2+2=(+)22,然后利用整体代入的方法计算【解答】解:根据题意得+=2,=6,所以2+2=(+)22=(2)22(6)=16故选:C【点评
13、】本题考查了一元二次方程ax2+bx+c=0(a0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=,x1x2=7(3分)(2014黄冈)如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2A4B8C12D(4+4)【分析】表面积=底面积+侧面积=底面半径2+底面周长母线长2【解答】解:底面圆的半径为2,则底面周长=4,底面半径为2cm、高为2cm,圆锥的母线长为4cm,侧面面积=44=8;底面积为=4,全面积为:8+4=12cm2故选:C【点评】本题利用了圆的周长公式和扇形面积公式求解,牢记公式是解答本题的关键8(3分)(2014黄冈)已知:在ABC中,BC=
14、10,BC边上的高h=5,点E在边AB上,过点E作EFBC,交AC边于点F点D为BC上一点,连接DE、DF设点E到BC的距离为x,则DEF的面积S关于x的函数图象大致为()ABCD【分析】判断出AEF和ABC相似,根据相似三角形对应边成比例列式求出EF,再根据三角形的面积列式表示出S与x的关系式,然后得到大致图象选择即可【解答】解:EFBC,AEFABC,=,EF=10=102x,S=(102x)x=x2+5x=(x)2+,S与x的关系式为S=(x)2+(0x5),纵观各选项,只有D选项图象符合故选:D【点评】本题考查了动点问题函数图象,主要利用了相似三角形的性质,求出S与x的函数关系式是解题
15、的关键,也是本题的难点二、填空题(共7小题,每小题3分,共21分)9(3分)(2014黄冈)计算:|=【分析】根据负数的绝对值等于它的相反数,可得答案案【解答】解:|=,故答案为:【点评】本题考查了绝对值,负数的绝对值是它的相反数10(3分)(2014黄冈)分解因式:(2a+1)2a2=(3a+1)(a+1)【分析】直接利用平方差公式进行分解即可【解答】解:原式=(2a+1+a)(2a+1a)=(3a+1)(a+1),故答案为:(3a+1)(a+1)【点评】此题主要考查了公式法分解因式,关键是掌握平方差公式:a2b2=(a+b)(ab)11(3分)(2014黄冈)计算:=【分析】先进行二次根式
16、的化简,然后合并同类二次根式求解【解答】解:原式=2=故答案为:【点评】本题考查了二次根式的加减法,关键是掌握二次根式的化简以及同类二次根式的合并12(3分)(2014黄冈)如图,若ADBE,且ACB=90,CBE=30,则CAD=60度【分析】延长AC交BE于F,根据直角三角形两锐角互余求出1,再根据两直线平行,内错角相等可得CAD=1【解答】解:如图,延长AC交BE于F,ACB=90,CBE=30,1=9030=60,ADBE,CAD=1=60故答案为:60【点评】本题考查了平行线的性质,直角三角形两锐角互余的性质,熟记性质是解题的关键13(3分)(2014黄冈)当x=1时,代数式+x的值
17、是32【分析】将除法转化为乘法,因式分解后约分,然后通分相加即可【解答】解:原式=+x=x(x1)+x=x2x+x=x2,当x=1时,原式=(1)2=2+12=32故答案为:32【点评】本题考查了分式的化简求值,熟悉除法法则和因式分解是解题的关键14(3分)(2014黄冈)如图,在O中,弦CD垂直于直径AB于点E,若BAD=30,且BE=2,则CD=4【分析】连结OD,设O的半径为R,先根据圆周角定理得到BOD=2BAD=60,再根据垂径定理由CDAB得到DE=CE,在RtODE中,OE=OBBE=R2,利用余弦的定义得cosEOD=cos60=,即=,解得R=4,则OE=2,DE=OE=2,
18、所以CD=2DE=4【解答】解:连结OD,如图,设O的半径为R,BAD=30,BOD=2BAD=60,CDAB,DE=CE,在RtODE中,OE=OBBE=R2,OD=R,cosEOD=cos60=,=,解得R=4,OE=42=2,DE=OE=2,CD=2DE=4故答案为:4【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧也考查了圆周角定理和解直角三角形15(3分)(2014黄冈)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上)则剪下的等腰三角形的面积为或
19、5或10cm2【分析】因为等腰三角形腰的位置不明确,所以分(1)腰长在矩形相邻的两边上,(2)一腰在矩形的宽上,(3)一腰在矩形的长上,三种情况讨论(1)AEF为等腰直角三角形,直接利用面积公式求解即可;(2)先利用勾股定理求出AE边上的高BF,再代入面积公式求解;(3)先求出AE边上的高DF,再代入面积公式求解【解答】解:分三种情况计算:(1)当AE=AF=5厘米时,SAEF=AEAF=55=厘米2,(2)当AE=EF=5厘米时,如图BF=2厘米,SAEF=AEBF=52=5厘米2,(3)当AE=EF=5厘米时,如图DF=4厘米,SAEF=AEDF=54=10厘米2故答案为:,5,10【点评
20、】本题主要考查矩形的角是直角的性质和勾股定理的运用,要根据三角形的腰长的不确定分情况讨论三、解答题(本大题共10小题,满分共75分)16(5分)(2014黄冈)解不等式组:,并在数轴上表示出不等式组的解集【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可【解答】解:解得:x3,解得:x1,则不等式组的解集是:x3【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断还可以观察不等式的解,若x较小的数、较大的数,那么解集为x介于两数之间17(6分)(2014黄冈)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影
21、机已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元问购买一块电子白板和一台投影机各需要多少元?【分析】设购买1块电子白板需要x元,一台投影机需要y元,根据买2块电子白板的钱买3台投影机的钱=4000元,购买4块电子白板的费用+3台投影机的费用=44000元,列出方程组,求解即可【解答】解:设购买1块电子白板需要x元,一台投影机需要y元,由题意得:,解得:答:购买一块电子白板需要8000元,一台投影机需要4000元【点评】此题主要考查了二元一次方程组的应用,解题关键是弄清题意,找出合适的等量关系,列出方程组18(6分)(2014黄冈)已知,如图所示,
22、AB=AC,BD=CD,DEAB于点E,DFAC于点F,求证:DE=DF【分析】连接AD,利用SSS得到三角形ABD与三角形ACD全等,利用全等三角形对应角相等得到EAD=FAD,即AD为角平分线,再由DEAB,DFAC,利用角平分线定理即可得证【解答】证明:连接AD,在ACD和ABD中,ACDABD(SSS),EAD=FAD,即AD平分EAF,DEAE,DFAF,DE=DF【点评】此题考查了全等三角形的判定与性质,以及角平分线定理,熟练掌握全等三角形的判定与性质是解本题的关键19(6分)(2014黄冈)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为号选手和号选手代表学校
23、参加全县汉字听写大赛(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得恰好选派一男一女两位同学参赛的有8种情况,然后利用概率公式求解即可求得答案【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)恰好选派一男一女两位同学参赛的有8种情况,恰好选派一男一女两位同学参赛的概率为:=【点评】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件用到的知识点
24、为:概率=所求情况数与总情况数之比20(7分)(2014黄冈)如图,在RtABC中,ACB=90,以AC为直径的O与AB边交于点D,过点D作O的切线,交BC于点E(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断ABC的形状,并说明理由【分析】(1)连接OD,由BC是O的切线得出BCA=90,由DE是O的切线,得出ED=EC,ODE=90,故可得出EDB=EBD,由此可得出结论(2)当以点O、D、E、C为顶点的四边形是正方形时,则DEB是等腰直角三角形,据此即可判断【解答】(1)证明:连接OD,AC是直径,ACB=90,BC是O的切线,BCA=90又DE是O的切线
25、,ED=EC,ODE=90,ODA+EDB=90,OA=OD,OAD=ODA,又OAD+DBE=90,EDB=EBD,ED=EB,EB=EC(2)解:当以点O、D、E、C为顶点的四边形是正方形时,则DEB=90,又ED=EB,DEB是等腰直角三角形,则B=45,ABC是等腰直角三角形【点评】本题考查了切线的性质以及切线长定理、圆周角定理,解题的关键是连接OD得垂直,构造出等腰三角形,利用“等角的余角相等解答21(7分)(2014黄冈)某市为了增强学生体质,全面实施“学生饮用奶”营养工程某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用浠马中学为了了解学生对不同
26、口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有200名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?【分析】(1)喜好“核桃味”牛奶的学生人数除以它所占的百分比即可得本次被调查的学生人数;(2)用本次被调查的学生的总人数减去喜好原味、草莓味、菠萝味、核桃味的
27、人数得出喜好香橙味的人数,补全条形统计图即可,用喜好“菠萝味”牛奶的学生人数除以总人数再乘以360,即可得喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)用喜好草莓味的人数占的百分比减去喜好原味的人数占的百分比,再乘以该校的总人数即可【解答】解:(1)105%=200(名)答:本次被调查的学生有200名,故答案为:200;(2)20038625010=40(名),条形统计图如下:=90,答:喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数为90;(3)1200()=144(盒),答:草莓味要比原味多送144盒【点评】本题考查的是条形统计图和扇形统计图的综合运用;
28、利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题22(9分)(2014黄冈)如图,已知双曲线y=与两直线y=x,y=kx(k0,且k)分别相交于A、B、C、D四点(1)当点C的坐标为(1,1)时,A、B、D三点坐标分别是A(2,),B(2,),D(1,1)(2)证明:以点A、D、B、C为顶点的四边形是平行四边形(3)当k为何值时,ADBC是矩形【分析】(1)由C坐标,利用反比例函数的中心对称性确定出D坐标,联立双曲线y=与直线y=x,求出A与B坐标即可;(2)由反比例函数为中心对称图形,利用中心对称性质得到OA=OB,OC=OD,利用对角线互相平分的四边形为平
29、行四边形即可得证;(3)由A与B坐标,利用两点间的距离公式求出AB的长,联立双曲线y=与直线y=kx,表示出CD的长,根据对角线相等的平行四边形为矩形,得到AB=CD,即可求出此时k的值【解答】解:(1)C(1,1),C,D为双曲线y=与直线y=kx的两个交点,且双曲线y=为中心对称图形,D(1,1),联立得:,消去y得:x=,即x2=4,解得:x=2或x=2,当x=2时,y=;当x=2时,y=,A(2,),B(2,);故答案为:2,2,1,1;(2)双曲线y=为中心对称图形,且双曲线y=与两直线y=x,y=kx(k0,且k)分别相交于A、B、C、D四点,OA=OB,OC=OD,则以点A、D、
30、B、C为顶点的四边形是平行四边形;(3)若ADBC是矩形,可得AB=CD,联立得:,消去y得:=kx,即x2=,解得:x=或x=,当x=时,y=;当x=时,y=,C(,),D(,),CD=AB=,整理得:(4k1)(k4)=0,k1=,k2=4,又k,k=4,则当k=4时,ADBC是矩形【点评】此题属于反比例函数综合题,涉及的知识有:坐标与图形性质,一次函数与反比例函数的交点,平行四边形,矩形的判定,两点间的距离公式,以及中心图形性质,熟练掌握性质是解本题的关键23(7分)(2014黄冈)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号已知A、B两船相距100(+
31、1)海里,船C在船A的北偏东60方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75方向上(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号)(2)已知距观测点D处100海里范围内有暗礁若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:1.41,1.73)【分析】(1)作CEAB,设AE=x海里,则BE=CE=x海里根据AB=AE+BE=x+x=100(+1),求得x的值后即可求得AC的长;过点D作DFAC于点F,同理求出AD的长;(2)作DFAC于点F,根据AD的长和DAF的度数求线段DF的长后与100比
32、较即可得到答案【解答】解:(1)如图,作CEAB,由题意得:ABC=45,BAC=60,设AE=x海里,在RtAEC中,CE=AEtan60=x;在RtBCE中,BE=CE=xAE+BE=x+x=100(+1),解得:x=100AC=2x=200在ACD中,DAC=60,ADC=75,则ACD=45过点D作DFAC于点F,设AF=y,则DF=CF=y,AC=y+y=200,解得:y=100(1),AD=2y=200(1)答:A与C之间的距离AC为200海里,A与D之间的距离AD为200(1)海里(2)由(1)可知,DF=AF=100(1)126.3海里,126.3100,所以巡逻船A沿直线AC
33、航线,在去营救的途中没有触暗礁危险【点评】本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并选择合适的边角关系解答24(9分)(2014黄冈)某地实行医疗保险(以下简称“医保”)制度医保机构规定:一:每位居民年初缴纳医保基金70元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用:居民个人当年治病所花费的医疗费医疗费的报销方法不超过n元的部分全部由医保基金承担(即全部报销)超过n元但不超过6000元的部分个人承担k%,其余部分由医保基金承担超过6000元的部分个人承担20%,其余部分由医保基金承担 如果设一位居民
34、当年治病花费的医疗费为x元,他个人实际承担的医疗费用(包括医疗费中个人承担部分和年初缴纳的医保基金)记为y元(1)当0xn时,y=70;当nx6000时,y=0.01k(xn)+70(nx6000)(用含n、k、x的式子表示)(2)表二是该地A、B、C三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n、k的值表二:居民ABC某次治病所花费的治疗费用x(元)4008001500个人实际承担的医疗费用y(元)70190470(3)该地居民周大爷2013年治病所花费的医疗费共32000元,那么这一年他个人实际承担的医疗费用是多少元?【分析】(1)根据医疗报销的比例,
35、可得答案;(2)根据医疗费用的报销费用,可得方程组,再解方程组,可得答案;(3)根据个人承担部分的费用,可得代数式,可得答案【解答】解:(1)由题意得当0xn时,y=70;当nx6000时,y=0.01k(xn)+70(nx6000);(2)由A、B、C三人的花销得,解得;(3)由题意得70+(6000500)40%+(320006000)20%=70+2200+5200=7470(元)答:这一年他个人实际承担的医疗费用是7470元【点评】本题考查了一次函数的应用,根据题意列函数解析式是解题关键25(13分)(2014黄冈)已知:如图,在四边形OABC中,ABOC,BCx轴于点C,A(1,1)
36、,B(3,1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0t2),OPQ与四边形OABC重叠部分的面积为S(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将OPQ绕着点P按逆时针方向旋转90,是否存在t,使得OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式【分析】(1)设抛物线解析式为y=ax2+bx(a0),然后把点A、B的坐标代入求出a、b的值,即可得解,再把函数解析式整理成顶点式形式
37、,然后写出顶点M的坐标;(2)根据点P的速度求出OP,即可得到点P的坐标,再根据点A的坐标求出AOC=45,然后判断出POQ是等腰直角三角形,根据等腰直角三角形的性质求出点Q的坐标即可;(3)根据旋转的性质求出点O、Q的坐标,然后分别代入抛物线解析式,求解即可;(4)求出点Q与点A重合时的t=1,点P与点C重合时的t=1.5,t=2时PQ经过点B,然后分0t1时,重叠部分的面积等于POQ的面积,1t1.5时,重叠部分的面积等于两个等腰直角三角形的面积的差,1.5t2时,重叠部分的面积等于梯形的面积减去一个等腰直角三角形的面积分别列式整理即可得解【解答】解:(1)设抛物线解析式为y=ax2+bx
38、(a0),把点A(1,1),B(3,1)代入得,解得,抛物线解析式为y=x2x,y=x2x=(x2)2,顶点M的坐标为(2,);(2)点P从点O出发速度是每秒2个单位长度,OP=2t,点P的坐标为(2t,0),A(1,1),AOC=45,点Q到x轴、y轴的距离都是OP=2t=t,点Q的坐标为(t,t);(3)OPQ绕着点P按逆时针方向旋转90,旋转后点O、Q的对应点的坐标分别为(2t,2t),(3t,t),若顶点O在抛物线上,则(2t)2(2t)=2t,解得t=(t=0舍去),t=时,点O(1,1)在抛物线y=x2x上,若顶点Q在抛物线上,则(3t)2(3t)=t,解得t=1(t=0舍去),t
39、=1时,点Q(3,1)在抛物线y=x2x上(4)点Q与点A重合时,OP=12=2,t=22=1,点P与点C重合时,OP=3,t=32=1.5,t=2时,OP=22=4,PC=43=1,此时PQ经过点B,所以,分三种情况讨论:0t1时,S=SOPQ=(2t)=t2,1t1.5时,S=SOPQSAEQ=(2t)(t)2=2t1;1.5t2时,S=S梯形OABCSBGF=(2+3)11(2t3)2=2(t2)2+=2t2+8t;所以,S与t的关系式为S=【点评】本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,等腰直角三角形的性质,二次函数图象上点的坐标特征,三角形的面积,难点在于(4)随着运动时间的变化,根据重叠部分的形状的不同分情况讨论,作出图形更形象直观