《人教版初二数学上册知识点总结(3篇).docx》由会员分享,可在线阅读,更多相关《人教版初二数学上册知识点总结(3篇).docx(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 人教版初二数学上册知识点总结(3篇) 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的全部线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 假如两条直线都和第三条直线平行,这两条直线也相互平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边
2、的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的
3、两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离一样的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的全部点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高相互重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60 34 等腰三角形的判定定理 假如一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 3
4、6 推论 2 有一个角等于60的等腰三角形是等边三角形 37 在直角三角形中,假如一个锐角等于30那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的全部点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 假如两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44 定理3 两个图形关于某直线对称,假如它们的对应线段或延长线相交,那么交点在对称轴上 45
5、 逆定理 假如两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46 勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2 47 勾股定理的逆定理 假如三角形的三边长a、b、c有关系a2+b2=c2 ,那么这个三角形是直角三角形 48 定理 四边形的内角和等于360 49 四边形的外角和等于360 550 多边形内角和定理 n边形的内角的和等于(n-2)180 51 推论 任意多边的外角和等于360 52 平行四边形性质定理1 平行四边形的对角相等 53 平行四边形性质定理2 平行四边形的对边相等 54 推论 夹在两条平行线间的平行线段相等
6、55 平行四边形性质定理3 平行四边形的对角线相互平分 56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 58 平行四边形判定定理3 对角线相互平分的四边形是平行四边形 59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60矩形性质定理1 矩形的四个角都是直角 初二数学上册学问点 篇二 逆定理的内容: 假如三角形三边长a,b,c满意a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。 说明: (1)勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角
7、形的可能外形,在运用这肯定理时,可用两小边的平方和与较长边的平方作比拟,若它们相等时,以a,b,c为三边的三角形是直角三角形; (2)定理中a,b,c及a2+b2=c2只是一种表现形式,不行认为是唯一的,如若三角形三边长a,b,c满意a2+b2=c,那么以a,b,c为三边的三角形是直角三角形,但此时的斜边是b. 2、利用勾股定理的逆定理推断一个三角形是否为直角三角形的一般步骤: (1)确定最大边; (2)算出最大边的平方与另两边的平方和; (3)比拟最大边的平方与别两边的平方和是否相等,若相等,则说明是直角三角形。 初二上册数学学问点归纳 篇三 平均数 根本公式:平均数=总数量总份数 总数量=
8、平均数总份数 总份数=总数量平均数 平均数=基准数+每一个数与基准数差的和总份数 根本算法: 求出总数量以及总份数,利用根本公式进展计算。 基准数法:依据给出的数之间的关系,确定一个基准数;一般选与全部数比拟接近的数或者中间数为基准数;以基准数为标准,求全部给出数与基准数的差;再求出全部差的和;再求出这些差的平均数;最终求这个差的平均数和基准数的和,就是所求的平均数,详细关系见根本公式多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。 多项式与多项式相乘时要留意以下几点: 多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积; 多项式相乘的结果应留意合并同类项; 对含有同一个字母的一次项系数是1的两个一次二项式相乘,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到。