《小学生数学《分数与除法的关系》教学反思.docx》由会员分享,可在线阅读,更多相关《小学生数学《分数与除法的关系》教学反思.docx(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、小学生数学分数与除法的关系教学反思篇1:小学生数学分数与除法的关系教学反思 小学生数学分数与除法的关系教学反思 分数与除法的关系是在分数的意义后进行教学的,使学生初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示商。但凡教过分数与除法的关系的老师都知道内容很简单,如果单纯地从形式上去教学它们的关系:一个分数的分子当于除法中的被除数,分母相当于除数,相信学生一定学得很扎实,但这样一来34的算理往往被忽视,为了让学生知其然且知其所以然,我是这样来组织教学的: 1通过实际操作感悟新知识 新课程标准强调要让学生在现实的情景中体验和理解数学,改变单一的接受式的学习方式,指导建立
2、具有“主动参与,乐于探究、交流合作”特征的多样化的学习方式,从而促进学生知识、技能、情感、态度和价值观的整体发展。因此,数学学习活动应该是一个生动活泼的、主动的、富有个性的过程,数学的教与学的方式,应该是一个充满生命活动力的过程。在教学中我引导学生用3张圆形纸片动手分一分,并学生思考把3块饼平均分给4个小朋友可以有几种分法,让学生通过动手操作,得出两种不同的分法,引申出两种含义,即1块饼的,3块饼的,通过这一过程,学生充分理解了34的算理。 2、在问题不断地解决与生成中探索新知识 探索是学生亲自经历和体验的学习过程,也就是让学生用自己理解的方式实现数学的“再创造”,在这其中教师的指导作用是潜在
3、和深远的。本课中,我让学生充分动手分圆片,让他们在自己的尝试、探究、猜想、思考中,不断产生问题、解决问题、再生成新的问题,给学生留与了操作的空间,因此学生对分数与除法的关系理解得比较透彻。 篇2: 分数与除法的关系数学教学反思 分数与除法的关系数学教学反思 分数与除法的关系是在分数的意义后进行教学的,使学生初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示商。但凡教过分数与除法的关系的老师都知道内容很简单,如果单纯地从形式上去教学它们的关系:一个分数的分子当于除法中的被除数,分母相当于除数,相信学生一定学得很扎实,但这样一来34的算理往往被忽视,为了让学生知其然且知其
4、所以然,我是这样来组织教学的: 1、通过实际操作感悟新知识 新课程标准强调要让学生在现实的情景中体验和理解数学,改变单一的接受式的学习方式,指导建立具有“主动参与,乐于探究、交流合作”特征的多样化的学习方式,从而促进学生知识、技能、情感、态度和价值观的整体发展。因此,数学学习活动应该是一个生动活泼的、主动的、富有个性的过程,数学的教与学的方式,应该是一个充满生命活动力的过程。在教学中我引导学生用3张圆形纸片动手分一分,并学生思考把3块饼平均分给4个小朋友可以有几种分法,让学生通过动手操作,得出两种不同的分法,引申出两种含义,即1块饼的,3块饼的,通过这一过程,学生充分理解了34的算理。 2、在
5、问题不断地解决与生成中探索新知识 探索是学生亲自经历和体验的学习过程,也就是让学生用自己理解的方式实现数学的“再创造”,在这其中教师的指导作用是潜在和深远的。本课中,我让学生充分动手分圆片,让他们在自己的尝试、探究、猜想、思考中,不断产生问题、解决问题、再生成新的问题,给学生留与了操作的空间,因此学生对分数与除法的关系理解得比较透彻。 篇3: 小学数学分数与除法关系教学反思 小学数学分数与除法关系教学反思 在本次校举行的公开课活动中,我听了高年级刘老师的一节数学课,听过这节课后。 我认为优点体现在: 一、能够借助直观形象的实物图,通过动手操作、演示说明等方法,让学生理解分数的意义; 二、小组参
6、与的力度大,充分调动了学生学习的积极性,使学生的“手、眼、口”都得到了锻炼。 不足之处是: 在教学环节的设计上,学生动手操作的内容过多,使整堂课显得罗嗦,练习的时间相对缩短了,本节课的重点内容是让学生理解:一个饼的四分之三也就是三个饼的四分之一,这个环节结束后自然而然地就引出了“分数与除法的关系”,因前面耽误的时间过长,致使本节课的内容没有讲完,学生没有理解透彻,教师就急于进入下一个环节的教学。从刘老师的这节课上,我也看到了自己在教学中的不足,作为数学教师,怎样上好一节课,怎样让学生切实理解所学内容? 我认为有以下两点值得去深思: 一、有没有把课堂还给学生? 课改风风火火进行了这么多年,而且一
7、直提倡把课堂还给学生,让学生做课堂的主人,教师只做引导者,可是实际的课堂教学中,教师讲的多,学生说的少,完全还是过去老的教学方法,造成这种情况的原因是:1、教师恐怕学生学不会,低估了学生的能力就;2、耽误教学进度;3、教师还没有形成意识 二、如何“还”? 很大一部分教师,也想把课堂还给学生,可是如何“还”?完全放手行吗?学生不是理想化的学生,因为学生之间毕竟存在着很大的差异,不要指望他们什么都会,如果“收、还”不当,还会适得其反,只有“收、还”得当,才会事半功倍。 说起容易做起难,要做到以上两点绝非易事,不仅需要提高教师自身的业务水平,更要深入地了解学生、钻研教材。 篇4:数学分数与除法教学反
8、思 本节课我是在学生学习了分数的产生和意义的基础上教学的,教学分数的产生时,平均分的过程往往不能得到整数的结果,要用分数来表示,已初步涉及到分数与除法的关系;教学分数的意义时,把一个物体或一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确提出来,在学生理解了分数的意义之后,教学分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲假分数与分数的基本性质打下基础。具体说本节课有以下几个特点: 一、直观演示是学生理解分数与除法的关系的前提。 由于学生在学习分数的意义时已经对把一个物体平均分
9、比较熟悉,所以本节课教学把一张饼平均分给3个人时并没有让学生操作,而是计算机演示分的过程,让学生理解1张饼的就是张。3块饼平均分给4个人,每人分多少张饼,是本节课教学的重点,也是难点。教师提供学具让学生充分操作,体验两种分法的含义,重点在如何理解3块饼的就是张。把2块饼平均分给3个人,每人应该分得多少块?继续让学生操作,丰富对2块饼的就是2/3块饼的理解。学生操作经验的积累有效地突破了本节课的难点。 二、培养学生提出问题的意识与能力是培养学生创新精神的关键。 爱因斯坦曾说:提出一个问题比解决一个问题更重要。学生提出问题的能力不是与生俱来的,需要教师精心、具体的指导。本节课围绕两种分法精心设计了
10、具有思考性的、合乎逻辑的问题串,“逼”学生进行有序的思考,从而进一步提出有价值的问题。比如学生展示完自己的分法后教师启发学生提出问题: a:你们是几块几块的分的? b:每人每次分得多少块饼? c:分了几次,共分了多少块?(就是3个块就是几块) d:怎样才能看出是几块? 问题的提出针对性强,有利于学生把握数学的本质。 三、用发展的思维去理解所学的知识,注重了知识的系统性。 数学知识不是孤立的,而是密切联系的,只有把知识放在一个完整的系统中,学生的研究才是有意义的。比如学生在应用分数与除法的关系练习时对于0.72=,部分学生会觉着的表示方法是不行的,教师解释:这种分数形式平时并不常见,随着今后的学
11、习,大家就能把它转化成常见的分数形式。 篇5:分数与除法的关系教学反思 分数与除法的关系的理解与掌握,不但可以加深对分数意义的理解,而且为后面学习假分数、带分数、分数的基本性质以及比、百分数打下基础,所以,分数与除法的关系在整个教材中起到承上启下的重要作用。教师能从整体上把握教材,激励学生积极参与数学活动:问题让学生自己解决,方法让学生自己探索,规律让学生自己发现,知识让学生自己获得。课堂上给了学生充足的思考时间和活动空间,学生有了表现自我的机会和成功的体验,发挥了主体作用。整个教学过程,结构严谨,层次分明,符合学生的认知规律,使学生独立地发现并获得分数与除法的关系,发展了学生的思维能力,达到
12、教学目标,突破了重点和难点。 我在学生用除法的意义理解分数的意义时,能够借助直观形象的实物图,通过动手操作,演示说明等方法,让学生理解分数的意义,这对于小学生来说,理解起来比较容易。但由于我在教学时,疏忽了个别理解能力差的学生,在演示说明的时候,叫的学生少,如果能多叫几个学生演示说明,再加上教师的点拨,我想这部分学生在理解上这难点时,就会比较容易。 学生不是理想化的学生,不要指望他们什么都会,因为学生之间毕竟存在着很大的差异。在教学把3块饼平均给4个人,每人应分多少饼?有很多同学都知道怎样分,但说得不是很明白。我让一个人说了后再请其他同学用数学语言完整的说一遍,这样长时间可以训练学生的用数学语
13、言来表达德能力。而叠在一起分的方法没有出现,我只好亲力亲为了,边演示边说明,但有部分同学不能理解。课后想来,如果我在一块一块的分时,追问一句:这种方法单位一是什么?肯定会有学生想到可以把一块饼看做单位1也可以把三块饼看做单位1啊!也许后面的方法就可以由学生说出来,用他们的语言来表达,他们会更有共鸣,更能理解。在以后的备课中,要把课堂预设充分考虑周全。备课不仅要备教材更要备学生,这样才能真正发挥学生的主体作用。 篇6:分数与除法的关系教学反思 教学片段: 师:把1米长的铁丝平均分成3段。每段长多少米?(你是怎样想的的?结果是多少?为什么?) 生1:把1米平均分成3份,每份就是1/3米。 生2:1
14、3=1/3(米) 生3:总量份数=每份数 生4:可用线段来表示 师:把2米长的铁丝平均分成3段。每段长多少米? 生1:23=2/3(米) 生2:不,应该是1/3米 师:你们能分别解释一下原因吗? 当这里学生似乎有些糊涂的时候,不知1/3米和2/3米有何区别时?老师及时的出示两段线段,让学生直观的看到了第一题和第二题的区别,问题也随着解决了,数学课中抽象的东西很多时候就需要像线段图这种直观的图形来解决。 教学片段: 师:把3块圆饼平均分给4个小朋友,每个小朋友分得多少块?(你是怎样列式的?结果是多少?) 生:34=3/4(块) 师:你能解释一下为什么是3/4块吗? 验证34为什么等于3/4这一过
15、程,这里教师并没有直接告诉学生答案,而是要学生自己来说一说为什么?学生利用手中现有的材料自己动手画一画、剪一剪、拼一拼,自主探索、交流合作,发现问题,解决问题。探索是学生亲自经历和体验的学习过程,也就是让学生用自己理解的方式实现数学的“再创造”。在整个教学的过程,教师为学生创设各种不平衡的问题情境,让学生在自己的尝试、探究、猜想、思考中,不断产生问题、解决问题、再生成新的问题。上面的教学片段中,教师给学生留与了操作的空间,为学生在操作的过程中自己生发问题,并在充分的讨论和思考中使学生相互解决问题,奠定了学习的.基础。同时,在教学的过程,教师挑起“矛盾”,引发疑问,引起争论,促使学生进行深入思考
16、,促使学生对自己所从事的活动产生兴趣,形成主动学习的心态。因此,一个富有生命力的课堂,必是注重学生学习过程的课堂,一个促使学生的问题不断解决与生成的课堂。 篇7:分数与除法的关系的教学反思 分数与除法的关系的教学反思 教学分数与除法的关系时学生很是配合,仿佛早已掌握了所有知识点,对于我的提问对答如流,甚至当我给出例题4时,全班不假思索不屑一顾的脱口而出四分之三,而当我问出为什么时,他们甚至不愿意去思考,仿佛我问的这个“为什么”简直就是废话中的废话。整个班级躁动不安,是清明假期临的缘故吧。看着即将发怒的老师,孩子们安静下一张张稚气的脸望着我,眼神中带有一丝丝惊恐。我突然想笑,这不就是儿时的自己吗
17、?我沉住气笑着说:明天放假了,看大家很是兴奋吧!孩子们长舒一口气掩面而笑。我接着说:站好最后一班岗的战士才是真正的好战士。同学们心领会神的坐得端端正正。“授人以鱼,不如授人以渔。”我接着说,“大家都知道除以4得四分之三,那除以4为什么等于四分之三呢?四分之三就相当于鱼。而老师想让你得到的是渔,你觉得呢?”果然还是聪明的孩子,轻轻一拨,大部分开始思考了,我和孩子们开始了我铺好的探究之旅。 一、通过操作,感悟算理。 我叫学生拿出前准备好的三个圆,让学生在小组内用自己喜欢的方式验证对除以4这一结果的猜想。孩子们或静下心仔细思考;或把自己手里的圆形折一折、剪一剪;或在本子上画一画、写一写;或同桌小声交
18、流自己的想法。我把想法不同的孩子叫上讲台,在黑板上画出自己的思考过程。并让他们一一介绍。通过学生的操作,得出两种分法,方法(一):把三个圆一个一个分,每次得四分之一,分次,就得个四分之一,就是四分之三张饼。方法(二):把三个圆叠起,平均分成4份,得到张饼的四分之一,也是个四分之一,相当于一张饼的四分之三。不管怎样分,都可以验证4用分数四分之三表示结果。还有学生想出了方法(三):除以4得07,07化成分数也是四分之三。通过学生自主操作让其充分理解其中的算理。 二、再次说理,悟出关系。 在学生初步感知分数与除法的关系时,我有意识地把例题改了一下,把块饼平均分给个人,把4块饼平均分给7个人,让学生通
19、过画图或说理,快速的算出它们的商。让学生亲身体会到计算两个整数相除,除不尽或商里面有小数时就用分数表示他们的商,这样既简便又快捷,而且不容易出错。 通过学生自主生成的三道算式,让学生去发现除法与分数之间到底有怎样的关系?并把自己的想法和同桌互相交流。最终学生小结出:除法中的被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数线。并明确:除法是一种运算,而分数是一种数。 三、对比练习,深化知识。 出示: 把三块饼平均分给7个小朋友,每人分得这些饼的几分之几。 把三块饼平均分给7个小朋友,每人分得几分之几块。 让学生观察这两道题目的区别,一道带单位,一道不带单位。第一道是根据分数的意义把单
20、位“1”平均分成几份,每份就是单位“1”的几分之一,是份数与单位“1”的关系,在数学中我们称为分率,分率不带单位。第二题带单位则表示的是一个具体的数量,则用总数量除以平均分的份数得到每份的具体数量,得数的单位跟被除数的单位一致。明确:分数有两种含义,一种表示与单位1的关系即分率(不带单位),一种则表示具体的数量(要带单位),为以后学习分数和百分数应用题做好铺垫。 在教学过程中,让学生在自主参与,动手操作、观察比较、交流汇报的基础上去推理和概括,能达到事半功倍的效果。我一直崇尚让学生自己去发现,自己去总结,让学生能学习探究问题的方法,而不是单纯的教授一些解题技巧,因为我知道授生以“渔”永远比授生
21、以“鱼”的重要的多! 篇8:分数与除法的关系教学反思 分数与除法的关系教学反思 这节课的重点是理解分数与除法的关系,难点是用除法意义理解分数意义。让学生通过本节课的学习,初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示商。能运用分数与除法的关系,解决一些简单的问题。 这节课的内容还是比较简单的。如果单纯的教学它们的关系:一个分数的分子相当于除法中的被除数,分母相当于除数。学生一定学得很扎实,但是这样一来34的算理往往被忽视。因此我把重点放在例题2,34=(块)的探究上。 在教学中我引导学生用3张圆形纸片动手分一分,并让学生思考把3块饼平均分给4个小朋友可以有几种分法
22、。 生1: 我们先把1块饼看作单位“1”,平均分成4份,每人先拿其中的一份,有3个圆,那就是每人有3个1/4块是3/4块。 生2: 把3块饼重叠的放在一起,然后再平均分成4份,每人拿其中的一份,里面也有3个1/4是3/4块。 让学生通过动手操作,得出两种不同的分法,引申出两种含义,即1块饼的3/4,3块饼的1/4,通过这一过程,学生充分理解了34的算理。 在整节课中我注重让学生主动参与学习过程,学生的主体地位得到了充分体现,在学习活动中,发展了个性,培养了能力。 篇9:数学分数除法教学反思 分数与除法的关系是在学习了分数的意义后进行的,目的是使学生初步知道两个整数相除,不论是被除数小于、等于、
23、或大于除数,都可以用分数来表示它们的商。这部分内容的教学,不但可以加深学生对分数意义的理解,而且是后面学习假分数、带分数、分数的基本性质以及比、百分数的基础,所以沟通分数与除法的联系至关重要。 一、成功之处 1、恰当铺垫,有利于分散难点。 为有效地分散算理,教学中设置的教学情境,以比较简单的题目形式分层呈现,比如:将3块月饼平均分给4个小朋友,每个小朋友得多少块?将1块月饼平均分给3个小朋友,每个小朋友得多少块?在该环节中,教师可借助实物操作着重引导学生理解:把1块月饼平均分成4份,其中的每一份都是这块月饼的1/4,也都是1/4块,通过结合生活实际的一些数据较小题目的出示作为铺垫,可以帮助学生
24、更好地认识分数与除法的联系。 2、实际操作,感悟新知识。 数学课程标准指出:“数学教学,要让学生亲身经历数学知识的形成过程。”也就是经历一个丰富、生动的思维过程,在教学中,在一块月饼平均分给四个小朋友,求每人分得多少?让学生拿一张圆形纸片代表一张饼,亲自动手分一分,唤起对分数意义的理解。在解决把3张饼平均分给4个小朋友,每个小朋友分得多少的问题时,由于问题难度增加了,所以我就请他们四人一小组想办法,进行动手操作尝试,并让小组派代表上台展示分的过程。学生通过动手操作,得出两种不同的分法,引申出两种含义:即每人分得1张饼的四分之三,也可以说是3张饼的四分之一。通过这样两次动手操作的过程,学生充分理
25、解算理,他们在自己的尝试、探究、猜想、思考中,不断解决问题、再生成新的问题,为探究分数与除法的关系搭建了沟通的桥梁。 3、鼓励发现,探索分数与除法的关系。 探索是学生亲自经历和体验的学习过程,引导学生观察13=1/3,34=3/4这两道算式,鼓励他们想一想: 两个(非0)自然数相除,在不能得到整数商的情况下还可以用什么数表示? 用分数表示商时,除式里的被除数,除数分别是分数里的什么? 分数与除法的关系是怎样的?以问题为主线,一步一步地引导学生归纳出了分数的意义,理解了分母、分子的含义。 二、改进之处 1、分数与除法的区别没有理解透彻。 虽然学生对分数与除法的联系学生理解的比较透彻,但是它们之间
26、还有哪些区别没有学生自己总结出来,剩下的时间比较仓促,只能由我帮助引导学生总结出两者的区别,即:除法表示两个数相除,是一种运算,是一个算式,而分数既可以表示分子与分母相除的关系,又可以表示一个数值。这部分内容下一节课应予以强调。 2、小组操作参差不齐。 在小组合作进行把3块饼平均分给4个人时,有的小组合作的效果较好,但有的小组并没有领会3/4块是怎么得到的,3个1/4块是3/4块,3块的1/4是3/4块,分数的这两种意义个别学生没有理解透彻。 针对本课的.不足之处,下一节课将进一步弥补,期待学生将分数与除法的联系和区别掌握牢固。 篇10:数学分数除法教学反思 在本次校举行的公开课活动中,我听了
27、高年级刘老师的一节数学课,听过这节课后。 我认为优点体现在: 一、能够借助直观形象的实物图,通过动手操作、演示说明等方法,让学生理解分数的意义; 二、小组参与的力度大,充分调动了学生学习的积极性,使学生的“手、眼、口”都得到了锻炼。 不足之处是: 在教学环节的设计上,学生动手操作的内容过多,使整堂课显得罗嗦,练习的时间相对缩短了,本节课的重点内容是让学生理解:一个饼的四分之三也就是三个饼的四分之一,这个环节结束后自然而然地就引出了“分数与除法的关系”,因前面耽误的时间过长,致使本节课的内容没有讲完,学生没有理解透彻,教师就急于进入下一个环节的教学。从刘老师的这节课上,我也看到了自己在教学中的不
28、足,作为数学教师,怎样上好一节课,怎样让学生切实理解所学内容? 我认为有以下两点值得去深思: 一、有没有把课堂还给学生? 课改风风火火进行了这么多年,而且一直提倡把课堂还给学生,让学生做课堂的主人,教师只做引导者,可是实际的课堂教学中,教师讲的多,学生说的少,完全还是过去老的教学方法,造成这种情况的原因是:1、教师恐怕学生学不会,低估了学生的能力就;2、耽误教学进度;3、教师还没有形成意识 二、如何“还”? 很大一部分教师,也想把课堂还给学生,可是如何“还”?完全放手行吗?学生不是理想化的学生,因为学生之间毕竟存在着很大的差异,不要指望他们什么都会,如果“收、还”不当,还会适得其反,只有“收、
29、还”得当,才会事半功倍。 说起容易做起难,要做到以上两点绝非易事,不仅需要提高教师自身的业务水平,更要深入地了解学生、钻研教材。 篇11:数学分数除法教学反思 观察是学生常用的一种学习方法。如在本课得出被除数除数=被除数除数时,我有意识的提出质疑:在分数与除法的关系中,有什么问题要问?学生有的自学了课本,有的依据课前或平时积累的经验,提出: (1)分母能不能为0? (2)用字母如何表示它们的关系? (3)分数是不是就是除法? 在这一过程中,学生提出问题指向明确,突出了课堂进一步发展的需要,并在观察发现中答达成问题的解决。有的学生认为分母不能为0,因为分母相当于除数。个别同学认为分子也不能为0,
30、但遭到同伴的反驳,澄清了分子可为0的理由。用字母表示分数与除法的关系,当教师提出用a表示被除数,b表示除数时,学生很轻松就用ab表示出来;在探究“分数是不是就是除数”,学生的争辩非常激烈,点燃了课堂学习的热情,有学生认为从被除数除数=被除数除数的关系中,非常明确说明分数就是除数,不然怎么用“等于”;有学生从教师提出:“我们学过了哪些数”中得到启发,认为分数是一个数,而除法是一道计算的式子,反对上面学生的意见,得出分数不等于除法;有人认为意义也不同,分数表示把单位“1”平均分成若干份,表示其中的一份或几份叫做分数,而除法表示把一个数平均分成几份,每份是多少?通过争辩,明确分数和除法的各自意义,提
31、示了“分数相当于除法”的生成目标,体验了成功所带来的信心和力量,实现了以人发展为本的教学理念。 “数学教学要从学生的生活经验和已有的知识背景出发,使学生感到数学就在自已的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣”、分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。所以我在设计分数与除法这一课时,从以下两方面考虑: 一、以解决问题入手,感受分数的价值。 从分饼的问题开始引入,让学生在解决问题的过程中,感受当商不能用整数表示时,可以用分数来表示商。本课
32、主要从两个层面展开,一是借助学生原有的知识,用分数的意义来解决把1个饼平均分成若干份,商用分数来表示;二是借助实物操作,理解几个饼平均分成若干份,也可以用分数来表示商。而这两个层面展开,均从问题解决的角度来设计的。 二、分数意义的拓展与除法之间关系的理解同步。 当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。 教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于
33、学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。 篇12:数学分数除法教学反思 分数除法简单应用题教学是整个小学阶段应用题教学的重、难点之一,如何激发学生主动积极地参与学习的全过程,引导学生正确理解分数除法应用题的数量关系。 一、从生活入手进行教学。 数学来源于生活,教学要从学生的生活经验和已有的知识背景出发,给他们提供充分的从事数学活动和交流的机会。在本课教学的一开始,我就改变由复习旧知引入新知的传统做法,直接取材于学生的生活实际,通过班级的人数引出题目:六年级男生人数是全班人数的二分之一,男生有27人,六年级有多少人?让学生简单计算。然后再让学生介绍本班的情况,
34、自编类似的应用题,交给另一部分同学解答,引发学生参与教学的积极性,使学生感受到数学就在自已的身边。在生活中学习数学,其乐无穷! 二、关注过程,让学生获得亲身体验。 教学中,为让学生认识解答分数除法应用题的关键是什么时,我故意不作任何说明,通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数除法应用题的关键是从题目的关键句找出数量之间的相等关系。 我在教学中努力体现自主、合作、探究的学习方式。以往分数除法应用题教学效率并不高,究其原因,主要是教师在教学中存在偏差。教师往往喜欢重关键词语琐碎地分析,喜
35、欢用严密的语言进行严谨的逻辑推理,虽分析得头头是道,但容易走两个极端;或者把学生本来已经理解的地方,仍做不必要的分析;或者把学生当作学者,对本来不可理解的部分,无为地做深入的、细碎的剖析,这样既浪费了宝贵的课堂时间,又起不到好的效果。教学中我把分数除法应用题与分数乘法应用题结合起来进行教学,让学生通过讨论、交流、对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力,省去了许多烦琐的分析和讲解。教师在教学中准确把握自己的地位。教师真正把自己当成了学生学习的帮助者、激励者和课堂生活的导演,凸显了学生的主体地位,体现了生本主义的教育思想。 三、多角度分析问
36、题,提高能力。 在计算应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。另外,改变以往只从例题中草草抽象概括数量关系,而让学生死记硬背,如是、占、比、相当于后面就是单位1;知1求几用乘法,知几求1用除法等等的做法,充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。 教学中存在的不足之处在于,启发不够到位。教学过程中学生时有答非所问和不知怎样答的情况,如归纳本节课中的应用题特点时,由于没有引导学生分析数量。 篇13
37、: 分数与除法教学反思 数学课要学分数除以整数了,这节课的内容比较简单,班级的大屏也坏了,让学生自学吧。 开始我先提出了自学要求。孩子们开始学了起来。陆续有孩子学完举手了。学生通过猜想尝试验证,发现一个数除以分数和乘这个分数的倒数的结果都相等。所以,乘以一个数就等于除以这个分数的倒数。然后就进行了练习,学生学习效果也不错,此时,我抛出了一个问题:一个数除以分数为什么要乘以这个数的倒数呢?多数学生没有了做题后的兴奋了。只是因为结果相同啊。学生不明白算理。只知其然而不知其所以然。我知道,这个知识点是我要给孩子们讲解的地方。此时我再结合线段图对学生进行算理的教学,大部分同学们恍然大悟,都露出了灿烂的
38、笑容。 从这节课,使我感悟到,计算教学,最省事的教法就是把计算方法和盘托出,直接告诉学生,然后进行大量的训练。可是这样教学,尽管也能让学生熟练掌握算法,但学生只知其然,不知其所以然。一节课中什么时候该讲,什么时候让学生自学,正如侯校长说的那样,真的需要老师好好琢磨呀。 这部分内容是在前面教学分数除以整数、整数除以分数的基础上教学的,通过这一内容的学习可以为以后的学习打下坚实的基础。我在设计本课时主要突出让学生充分评价和反思。如在本节教学中,我先请学生独立计算,然后再四人小组合作交流自己的计算方法。汇报结果时,有的小组说因为整数除以分数,分数除以整数的计算方法都是等于乘以这个数的倒数。他们认为分
39、数除以分数的计算方法也等于乘以这个数倒数。通过交流讨论,最后得出分数除以分数的计算方法是一个数除以分数等于这个数乘以这个分数的倒数。然后,再和前面学的整数除以分数,分数除以整数联系起来,得出统一适用的分数除法的法则是甲数除以乙数(0除外),等于乘以乙数的倒数。很自然地复习了旧知识,再结合具体的算式强调转化的过程,特别是除号要变为乘号,除数变成了它的倒数,两个要同时变。由此推导出分数除以分数也是这样的,并且归纳其中的联系,发现其中不管是怎么样的分数除法都是一样的,这样就可以只用甲数和乙数来区别。根据学生的分析,我及时把统一的计算法则板书在黑板上,并把变化的和不变的用不同的记号标出来。 本节的教学
40、中,学生始终以积极的态度投入到每一个环节的学习中,在主动进行探究,并总结出计算法则。而对新知识的学习,不是老师去讲解。而是让学生自主探求解决问题的方法,这为学生提供了充分的学习空间。学生的思维是发散的,学生的方法是多样的,体现了学生的主动性。 篇14: 分数与除法教学反思 分数与除法的关系是在分数的意义后进行教学的,使学生初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示商。但凡教过分数与除法的关系的老师都知道内容很简单,如果单纯地从形式上去教学它们的关系:一个分数的分子当于除法中的被除数,分母相当于除数,相信学生一定学得很扎实,但这样一来34的算理往往被忽视,为了让
41、学生知其然且知其所以然,我是这样来组织教学的: 1、通过实际操作感悟新知识 新课程标准强调要让学生在现实的情景中体验和理解数学,改变单一的接受式的学习方式,指导建立具有“主动参与,乐于探究、交流合作”特征的多样化的学习方式,从而促进学生知识、技能、情感、态度和价值观的整体发展。因此,数学学习活动应该是一个生动活泼的、主动的、富有个性的过程,数学的教与学的方式,应该是一个充满生命活动力的过程。在教学中我引导学生用3张圆形纸片动手分一分,并学生思考把3块饼平均分给4个小朋友可以有几种分法,让学生通过动手操作,得出两种不同的分法,引申出两种含义,即1块饼的,3块饼的,通过这一过程,学生充分理解了34
42、的算理。 2、在问题不断地解决与生成中探索新知识 探索是学生亲自经历和体验的学习过程,也就是让学生用自己理解的方式实现数学的“再创造”,在这其中教师的指导作用是潜在和深远的。本课中,我让学生充分动手分圆片,让他们在自己的尝试、探究、猜想、思考中,不断产生问题、解决问题、再生成新的问题,给学生留与了操作的空间,因此学生对分数与除法的关系理解得比较透彻。 本节课的教学着重让学生在以下几方面理解: 1、分数与除法之间有着密切的联系,但分数不等同于除法,二者之间有一定的区别:除法是一种运算,分数是一个数。 2、一个分数,不但可以从分数的意义上理解,也可以从分数与除法的关系上理解。如:四分之三可以理解为
43、把单位“1”平均分成4份,表示其中的3份的数;也可以理解为把3平均分成4份,表示这样一份的数。 3、为了让学生更好的记忆分数与除法的关系,我还设计了顺口溜: 分数、除法关系妙,记忆方法有诀窍。 两数相除分数表,弄清位置很重要。 除号相当分数线,分子、分母两数担。 位置顺序不能调,相互关系要记牢。 篇15:分数与除法教学反思 分数与除法是五年级下册第四单元分数意义中的内容,是建立在除法意义的平均分和把一个物体或多个物体看做单位“1”进行平均分概念的基础上进行教学的。这部分知识加深和扩展了学生对分数意义的理解,同时也为后面讲解假分数以及把假分数化成整数或带分数做好准备。 在本节课的教学中,我首先选
44、择恰当的切入点,从解决简单问题入手,提出了这样几个问题:把6张饼平均分给3个人,每人分到几张饼?把一张饼平均分给2个人,每人分到几张饼?把1张饼平均分给3个人,每人分到几张饼?在此基础上,观察三个算式和得数,得出结论:一张饼的1/3是1/3张饼。为促进学生主动沟通知识间的内在联系做了一个思路引领。 其次充分展现学生的思维过程,以加深学生对知识的理解。我在这里提出了新的问题:如果把3张饼平均分给4位同学,每人分到几张饼?怎样列式?结果每人分到几张饼呢?请同学们借助手中的学具,分一分、拼一拼,看看到底每人分到多少张饼呢?这一问题的解决过程,既是本节课教学的重点,又是学生理解的难点。我让学生亲自动手
45、分一分,拼一拼,并让学生展示分的过程和分得的结果是怎样的,学生出现了不同的分法和结果。我在这里引导学生展开讨论,使学生在实际操作交流中,对知识的内在联系有了更好的理解。 本节课的教学中,我围绕分饼的方法展开交流,引发学生不断的数学思考,促进学生在动手操作,主动思考中沟通知识间的内在联系,帮助学生不断扩展已有的知识结构,加强了思维深刻性的培养。在教学新课时,学生说的很好,我应该最后再引导学生完整的说出:每人分到这张饼的1/4,3张饼的1/4就是3/4张饼,即3张饼的1/4展开后就是一张饼的3/4。而我在课前的预设中是有这个环节的,结果在教学中,把这个环节落下了。 在今后的教学质量中,应尽量把数学
46、课上的更扎实有效,使学生的数学思维能力和学习能力得到更好的发展和提高。 篇16:分数与除法教学反思 “分数与除法”这一教学内容,是人教版小学数学第十册,第四单元中第一小节的内容。在学生学习本课内容之前,已掌握了分数的意义,知道了分数的产生等知识,学完这节课的内容将为今后学习假分数以及假分数化为整数或带分数做好准备。所以让学生很好的掌握分数与除法之间的关系,十分重要。 这节课的教学目标主要有两个,第一,让学生掌握分数与除法的关系,第二,要让学生了解两种分法。让学生体会两种分法的全过程。 在本节课的教学中,我通过从解决简单的问题入手提出了这样几个问题:把6张饼平均分给3个人每人分得几张饼?把1张饼平均分给2个人每人分得几张饼?把1张饼平均分给3个人每人分得几张饼?学生分别口答每人分得2张、0.5张、1/3张。在此基础上引导学生观察三个算式和得数,学生很快得出一个结论:两数相除,商可能是整数、小数或是分数,以此作为本节课的切入点。 让学生明白1张饼的3/4相当于3块饼的1/4是本节课的重点也是难点,我通过让学生用3张圆形纸片动手