《2011年海南省海口市中考数学真题及答案.docx》由会员分享,可在线阅读,更多相关《2011年海南省海口市中考数学真题及答案.docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2011年海南省海口市中考数学真题及答案一、选择题(本大题满分42分,每小题3分)下列各题的四个备选答案有且只有一个正确,请在答题卡上把正确答案的字母代号按要求涂黑1、3的绝对值是()A、3B、3C、D、考点:绝对值。专题:计算题。分析:计算绝对值要根据绝对值的定义求解第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号解答:解:|3|=3故3的绝对值是3故选B点评:考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是是它的相反数;0的绝对值是02、计算(a2)3,正确结果是()A、a5B、a6C、a8D、a9考点:幂的乘方与积的乘方。专题:探究型。分
2、析:根据幂的乘方法则进行计算即可解答:解:由幂的乘方与积的乘方法则可知,(a2)3=a23=a6故选B点评:本题考查的是幂的乘方法则,即底数不变,指数相乘3、不等式x20的解集是()A、x2B、x2C、x2D、x2考点:解一元一次不等式。分析:首先移项,注意要2移项后变号,再合并同类项即可解答:解:x20,移项得:x0+2,合并同类项得:x2,不等式的解集为:x2故选D点评:此题主要考查了一元一次不等式的解法,解题过程中一定要注意符号问题4、数据2,l,0,1,2的中位数是()A、1B、0C、1D、2考点:中位数。专题:应用题。分析:将数据按从小到大依次排列,由于数据有奇数个,故中间位置的数即
3、为中位数解答:解:将数据2,l,0,1,2按从小到大依次排列为l,0,1,2,2,中位数为1故选A点评:此题考查了中位数的定义,将原数据按从小到大依次排列是解题的关键5、“比a的2倍大l的数”用代数式表示是()A、2(a+1)B、2(a1)C、2a+1D、2a1考点:列代数式。分析:由题意按照描述列式子为2a+1,从选项中对比求解解答:解:由题意按照描述列下式子:2a+1故选C点评:解决问题的关键是读懂题意,找到所求的量的等量关系6、如图所示几何体的俯枧图是()A、B、C、D、考点:简单组合体的三视图。专题:几何图形问题。分析:找到从上面看所得到的图形即可,注意中间一个圆内切解答:解:从上面看
4、可得到一个长方形,中间一个内切的圆的组合图形故选A点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,注意看得到的棱画实线7、正方形是轴对称图形,它的对称轴共有()A、1条B、2条C、3条D、4条考点:正方形的性质;轴对称图形。来源:学科网ZXXK专题:计算题。分析:正方形既是矩形,又是菱形,具有矩形和菱形的轴对称性,由此可知其对称轴解答:解:正方形的对称轴是两对角线所在的直线,两对边中点所在的直线,对称轴共4条故选D点评:本题考查了正方形的轴对称性关键是明确正方形既具有矩形的轴对称性,又具有菱形的轴对称性8、一把1枚质地均匀的昔通硬币重复掷两次,落地后两次都是正面朝上的概率是()
5、A、1B、C、D、考点:列表法与树状图法。专题:数形结合。分析:列举出所有情况,看落地后两次都是正面朝上的情况数占总情况数的多少即可解答:解:共有4种情况,落地后两次都是正面朝上的情况数有1种,所以概率为故选D点评:考查概率的求法;得到落地后两次都是正面朝上的情况数是解决本题的关键;用到的知识点为:概率=所求情况数与总情况数之比9、海南省20l0年第六次人口普查数据显示,2010年11月1日零时全省总人口为8671518人数据8671518用科学记数发(保留三个有效数字)表示应是()A、8.7106B、8.7107C、8.67106D、8.67107考点:科学记数法与有效数字。分析:科学记数法
6、的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值是易错点,由于8671518有7位,所以可以确定n=71=6有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关解答:解:8671518=8.6715181068.67106故选C点评:此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法10、已知点A(2,3)在反比例函数的图象上,则k的值是()A、7B、7C、5D、5考点:待定系数法求反比例函数解析式。分析:将A点坐标代入反比例函数,即可得出答案解答:解:点A(2,
7、3)在反比例函数的图象上,k+1=6解得k=5故选D点评:本题考查了用待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征,横纵坐标乘积为定值11、如图已知直线a,b被直线c所截,且ab,1=48,那么2的度数为()A、42B、48C、52D、132考点:平行线的性质。分析:由ab,1=48,根据两直线平行,同位角相等得到3=1=48,再根据对顶角相等即可得到2解答:解:如图,ab,1=48,3=1=48,2=3=48故选B点评:本题考查了两直线平行的性质:两直线平行,同位角相等;也考查了对顶角的性质12、如图,在ABC中ACB=90,CDAB于点D,则图中相似三角形共有()A、1对B
8、、2对C、3对D、4对考点:相似三角形的判定。专题:常规题型。分析:根据相似三角形的判定定理及已知即可得到存在的相似三角形解答:解:ACB=90,CDAB,ABCACD,ACDCBD,ABCCBD,所以有三对相似三角形来源:学#科#网Z#X#X#K故选C点评:本题主要考查相似三角形的判定定理:(1)两角对应相等的两个三角形相似(2)两边对应成比例且夹角相等的两个三角形相似(3)三边对应成比例的两个三角形相似13、如图,在以AB为直径的半圆O中,C是它的中点,若AC=2,则ABC的面积是()A、1.5B、2C、3D、4考点:圆周角定理;等腰直角三角形;圆心角、弧、弦的关系。分析:利用圆周角定理推
9、论可得C=90,根据C是半圆O中点,可得AC=CB,再求三角形的面积=ACBC解答:解:C是半圆O中点,AC=CB=2,AB为直径,C=90,ABC的面积是:22=2故选B点评:此题主要考查了圆周角定理与三角形的面积公式,做题的关键是证出ACB是等腰直角三角形14、如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论 MNBC,MN=AM,下列说法正确的是()A、都对B、都错C、对错D、错对考点:翻折变换(折叠问题);平行四边形的性质。分析:根据题意,推出B=D=AMN,即可推出结论,由AM=DA推出四边形AMND为菱形,因此推出解答:解:平行四边形ABCD
10、,B=D=AMN,MNBC,AM=DA,四边形AMND为菱形,MN=AM故选A点评:本题主要考查翻折变换的性质、平行四边形的性质、菱形的判定和性质,平行线的判定,解题的关键在于熟练掌握有关的性质定理,推出四边形AMND为菱形二、填空题(本答题满分12分,每小题3分)15、分解因式:x24=(x+2)(x2)考点:因式分解-运用公式法。分析:直接利用平方差公式进行因式分解即可解答:解:x24=(x+2)(x2)点评:本题考查了平方差公式因式分解能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反16、方程的解是x=3考点:解分式方程。分析:观察可得最简公分母是(2+x),方程两边乘最简
11、公分母,可以把分式方程转化为整式方程求解解答:解:方程的两边同乘(2+x),得x=3x+6,解得x=3检验:把x=3代入(x+2)=10原方程的解为:x=3故答案为:x=3点评:本题考查了分式方程的解的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解(2)解分式方程一定注意要验根17、如图,在ABC中,AB=AC=3cm,AB的垂直平分线交AC于点N,BCN的周长是5cm,则BC的长等于2cm考点:线段垂直平分线的性质。专题:计算题。分析:由AB的垂直平分线交AC于点N,根据线段的垂直平分线的性质得到NA=NB,而BC+BN+NC=5cm,则BC+AN+NC=5
12、cm,由AC=AN+NC=3cm,即可得到BC的长解答:解:AB的垂直平分线交AC于点N,NA=NB,又BCN的周长是5cm,BC+BN+NC=5cm,BC+AN+NC=5cm,而AC=AN+NC=3cm,BC=2cm故答案为:2点评:本题考查了线段的垂直平分线的性质:线段的垂直平分线的点到线段两端点的距离相等;也考查了三角形周长的定义18、如图,AB是O的直径,AC是O的切线,A为切点,连接BC交O于点D,若C=50,则AOD=80考点:切线的性质;圆周角定理。分析:连接AD,推出ADBD,DAC=B=90C=40,推出AOD=80解答:解:连接AD,AB是O的直径,AC是O的切线,ADBD
13、,ABAC,C=50,DAC=B=90C=40,AOD=80故答案为:80点评:本题主要考查圆周角定理、切线的性质,解题的关键在于连接AD,构建直角三角形,求B的度数三、解答题(本答题满分56分)19、计算(1)(2)(a+1)2a(a1)考点:整式的混合运算;实数的运算。分析:(1)本题需先根据实数的运算法则分别进行计算,再把所得结果合并即可(2)本题需先根据整式的混合运算的顺序和乘法公式分别进行计算再合并同类项即可求出结果解答:解(1),=328,=7;(2)(a+1)2a(a1),=a2+2a+1a2+a,=3a+1点评:本题主要考查了整式的混合运算,在解题时要注意运算顺序和法则以及乘法
14、公式的综合应用是本题的关键20、第十六届亚远会共颁发金牌477枚,如图是不完整的金牌数条形统计图和扇形统计图,根据以上信息觯答下列问题:(1)请将条形统计图补充完整;(2)中国体育健儿在第十六届亚运会上共夺得金牌199枚;(3)在扇形统计图中,日本代表团所对应的扇形的圆心角约为36(精确到1)考点:条形统计图;扇形统计图。分析:(1)利用总人数减去中国,韩国,伊朗,其它国家的人数,即可求得日本的奖牌数,从而作出统计图;(2)根据条形统计图即可直接写出;(3)利用360度乘以日本所占的比例即可求解解答:解:(1)日本的奖牌数是:4771997620134=48来源:学科网(2)根据条形图可以得到
15、:中国体育健儿在第十六届亚运会上共夺得金牌199枚;故答案是:199(3)圆心角是:36036故答案是:36来源:学科网ZXXK点评:本题主要考查了条形统计图与扇形统计图,条形统计图容易表示出各段人数的多少,而扇形统计图可以反映出各部分所占的比例21、在正方形网格中建立如图所示的平面直角坐标系xoyABC的三个顶点都在格点上,点A的坐标是(4,4 ),请解答下列问题;(1)将ABC向下平移5个单位长度,画出平移后的A1B1C1,并写出点A的对应点A1的坐标;(2)画出A1B1C1关于y轴对称的A2B2C2;(3)将ABC绕点C逆时针旋转90,画出旋转后的的A3B3C考点:作图-旋转变换;作图-
16、轴对称变换;作图-平移变换。分析:(1)由将ABC向下平移5个单位长度,画出平移后的A1B1C1,即可知横坐标不变,纵坐标减5,则可在平面直角坐标系中画出;(2)由A1B1C1关于y轴对称的是A2B2C2,即可知纵坐标不变,横坐标互为相反数,在平面直角坐标系中画出即可;(3)由将ABC绕点C逆时针旋转90,则可知旋转角为90,注意是逆时针旋转即可画出图形解答:解:(1)如图:点A的对应点A1的坐标为(4,1);(2)如图:A2B2C2即是A1B1C1关于y轴对称得到的;(3)如图:A3B3C即是将ABC绕点C逆时针旋转90得到的点评:此题考查了平移、对称以及旋转的知识,考查了学生的动手能力掌握
17、各种变换的性质是解题的关键22、在海南东环高铁上运行的一列“和谐号”动车组有一等车厢和二等车厢共6节,一共设有座位496个其中每节一等车厢设座位64个,每节二等车厢设座位92个试求该列车一等车厢和二等车厢各有多少节?考点:二元一次方程组的应用。专题:方程思想。分析:设该列车一等车厢和二等车厢各有x、y节,则第一个相等关系为:x+Y=6,再根据一共设有座位496个其中每节一等车厢设座位64个,每节二等车厢设座位92个得第二个相等关系为:64x+92y=496,由此列方程组求解解答:解:设该列车一等车厢和二等车厢各有x、y节,根据题意得:,解得:答:该列车一等车厢和二等车厢各有2,4节点评:此题考
18、查的知识点是二元一次方程组的应用,解题的关键是由已知找出两个相等关系,列方程组求解23、如图,在菱形ABCD中,A=60,点P、Q分别在边AB、BC上,且AP=BQ(1)求证:BDQADP;(2)已知AD=3,AP=2,求cosBPQ的值(结果保留根号)考点:菱形的性质;全等三角形的判定与性质;解直角三角形。分析:(1)由四边形ABCD是菱形,可证得AD=AB,ABD=CBD=ABC,ADBC,又由A=60,易得ABD是等边三角形,然后由SAS即可证得BDQADP;(2)首先过点Q作QEAB,交AB的延长线于E,然后由三角函数的性质,即可求得PE与QE的长,又由勾股定理,即可求得PQ的长,则可
19、求得cosBPQ的值解答:解:(1)四边形ABCD是菱形,AD=AB,ABD=CBD=ABC,ADBC,A=60,ABD是等边三角形,ABC=120,AD=BD,CBD=A=60,AP=BQ,BDQADP(SAS);(2)过点Q作QEAB,交AB的延长线于E,BDQADP,BQ=AP=2,ADBC,QBE=60,QE=QBsin60=2=,BE=QBcos60=2=1,AB=AD=3,PB=ABAP=32=1,PE=PB+BE=2,在RtPQE中,PQ=,cosBPQ=点评:此题考查了菱形的性质与勾股定理、三角函数的性质此题难度适中,解题的关键是数形结合思想的应用24、如图,已知抛物线y=x2
20、+bx+9b2(b为常数)经过坐标原点O,且与x轴交于另一点E其顶点M在第一象限(1)求该抛物线所对应的函数关系式;(2)设点A是该抛物线上位于x轴上方,且在其对称轴左侧的一个动点;过点A作x轴的平行线交该抛物线于另一点D,再作ABx轴于点BDEx轴于点C当线段AB、BC的长都是整数个单位长度时,求矩形ABCD的周长;求矩形ABCD的周长的最大值,并写出此时点A的坐标;当矩形ABCD的周长取得最大值时,它的面积是否也同时取得最大值?请判断井说明理由考点:二次函数综合题。分析:(1)已知抛物线过原点,代入求得b值而求出二次函数解析式;(2)关键在于正确作出旋转后的图形,结合几何知识,利用数形结合
21、的思想求解;应当明确矩形ABCD进行求解,逐一讨论求解,要求思维的完备性代入得到二次函数,而进行讨论解得解答:解:(1)由题意代入原点到二次函数式则9b2=0,解得b=3,由题意抛物线的对称轴大于0,所以b=3,所以解析式为y=x2+3x;(2)根据两个三角形相似的条件,由于在ECD中,ECD=60,若BCP与ECD相似,则BCP中必有一个角为60,下面进行分类讨论:当P点直线CB的上方时,由于PCB中,CBP90或BCP90,PCB为钝角三角形,又ECD为锐角三角形,ECD与CPB不相似从而知在直线CB上方的抛物线上不存在点P使CPB与ECD相似;当P点在直线CB上时,点P与C点或B点重合,不能构成三角形,来源:学科网在直线CB上不存在满足条件的P点;当P点在直线CB的下方时,若BCP=60,则P点与E1点重合,此时,ECD=BCE1,而,BCE与ECD不相似,若CBP=60,则P点与A点重合,根据抛物线的对称性,同理可证BCA与CED不相似,若CPB=60,假设抛物线上存在点P使CPB与ECD相似,EF=sin604=2,FD=1,ED=,当矩形ABCD的周长取得最大值时,它的面积能同时取得最大值点评:本题是二次函数的综合题型,其中涉及的到大知识点有抛物线的顶点公式和三角形的面积求法在求有关动点问题时要注意分析题意分情况讨论结果