《2010年江西高考理科数学真题及答案.docx》由会员分享,可在线阅读,更多相关《2010年江西高考理科数学真题及答案.docx(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2010年江西高考理科数学真题及答案第卷一、选择题:本大题共12小题,每个小题5分,共60高考资源*网分。在每个小题给出的四个选项中,有一项是符合题目要求的高考资源*网。1.已知(x+i)(1-i)=y,则实数x,y分别为( )A.x=-1,y=1 B. x=-1,y=2C. x=1,y=1 D. x=1,y=2【答案】 D【解析】考查复数的乘法运算。可采用展开计算的方法,得,没有虚部,x=1,y=2.2.若集合,则=( )A. B. C. D. 【答案】 C【解析】考查集合的性质与交集以及绝对值不等式运算。常见的解法为计算出集合A、B;,,解得。在应试中可采用特值检验完成。3.不等式 高考资
2、源*网的解集是( ) A. B. C. D. 【答案】 A【解析】考查绝对值不等式的化简.绝对值大于本身,值为负数.,解得A。或者选择x=1和x=-1,两个检验进行排除。4. ( )A. B. C. 2 D. 不存在【答案】B【解析】考查等比数列求和与极限知识.解法一:先求和,然后对和取极限。5.等比数列中,=4,函数,则( )A B. C. D. 【答案】C【解析】考查多项式函数的导数公式,重点考查学生创新意识,综合与灵活地应用所学的数学知识、思想和方法。考虑到求导中,含有x项均取0,则只与函数的一次项有关;得:。6. 展开式中不含项的系数的和为( )高考资源*网A.-1 B.0 C.1 D
3、.2【答案】B【解析】考查对二项式定理和二项展开式的性质,重点考查实践意识和创新能力,体现正难则反。采用赋值法,令x=1得:系数和为1,减去项系数即为所求,答案为0.7.E,F是等腰直角ABC斜边AB上的三等分点,则( )A. B. C. D. 【答案】D【解析】考查三角函数的计算、解析化应用意识。解法1:约定AB=6,AC=BC=,由余弦定理CE=CF=,再由余弦定理得,解得解法2:坐标化。约定AB=6,AC=BC=,F(1,0),E(-1,0),C(0,3)利用向量的夹角公式得,解得。8.直线与圆相交于M,N两点,若,则k的取值范围是A. B. C. D. 【答案】A【解析】考查直线与圆的
4、位置关系、点到直线距离公式,重点考察数形结合的运用.解法1:圆心的坐标为(3.,2),且圆与y轴相切.当,由点到直线距离公式,解得;解法2:数形结合,如图由垂径定理得夹在两直线之间即可, 不取,排除B,考虑区间不对称,排除C,利用斜率估值,选A 9给出下列三个命题:函数与是同一函数;高考资源*网若函数与的图像关于直线对称,则函数与的图像也关于直线对称;若奇函数对定义域内任意x都有,则为周期函数。其中真命题是A. B. C. D. 【答案】C【解析】考查相同函数、函数对称性的判断、周期性知识。考虑定义域不同,错误;排除A、B,验证, ,又通过奇函数得,所以f(x)是周期为2的周期函数,选择C。高
5、考资源*网10.过正方体的顶点A作直线L,使L与棱,所成的角都相等,这样的直线L可以作A.1条 B.2条 C.3条 D.4条【答案】D【解析】考查空间感和线线夹角的计算和判断,重点考查学生分类、划归转化的能力。第一类:通过点A位于三条棱之间的直线有一条体对角线AC1,第二类:在图形外部和每条棱的外角和另2条棱夹角相等,有3条,合计4条。 11.一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测。方法一:在10箱子中各任意抽查一枚;方法二:在5箱中各任意抽查两枚。国王用方法一、二能发现至少一枚劣币的概率分别为和,则A. = B. D。以上三种情况都有可
6、能【答案】B【解析】考查不放回的抽球、重点考查二项分布的概率。本题是北师大版新课标的课堂作业,作为旧大纲的最后一年高考,本题给出一个强烈的导向信号。方法一:每箱的选中的概率为,总概率为;同理,方法二:每箱的选中的概率为,总事件的概率为,作差得,分别经过三条棱,作一个截面平分三棱锥的体积,截面面积依次为,则,的大小关系为 。【答案】 【解析】考查立体图形的空间感和数学知识的运用能力,通过补形,借助长方体验证结论,特殊化,令边长为1,2,3得。三、解答题:本大题共6高考资源*网小题,共74分,解答应写出文字说明、证明过程或演算步骤。17.(本小题满分12高考资源*网分)已知函数。(1) 当m=0时
7、,求在区间上的取值范围;(2) 当时,求m的值。【解析】考查三角函数的化简、三角函数的图像和性质、已知三角函数值求值问题。依托三角函数化简,考查函数值域,作为基本的知识交汇问题,考查基本三角函数变换,属于中等题.解:(1)当m=0时, ,由已知,得从而得:的值域为(2)化简得:当,得:,代入上式,m=-2.18. (本小题满分高考资源*网12分)某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门。首次到达此门,系统会随机(即等可能)为你打开一个通道,若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门。再次到达智能门时,系统会随机打开一个你未到过的通道,
8、直至走完迷宫为止。令表示走出迷宫所需的时间。(1) 求的分布列;(2) 求的数学期望。【解析】考查数学知识的实际背景,重点考查相互独立事件的概率乘法公式计算事件的概率、随机事件的数学特征和对思维能力、运算能力、实践能力的考查。(1) 必须要走到1号门才能走出,可能的取值为1,3,4,6,1346分布列为:(2)小时19. (本小题满分高考资源*网12分)设函数。(1)当a=1时,求的单调区间。(2)若在上的最大值为,求a的值。【解析】考查函数导数运算、利用导数处理函数最值等知识。 解:对函数求导得:,定义域为(0,2)(1) 单调性的处理,通过导数的零点进行穿线判别符号完成。当a=1时,令当为
9、增区间;当为减函数。(2) 区间上的最值问题,通过导数得到单调性,结合极值点和端点的比较得到,确定待定量a的值。当有最大值,则必不为减函数,且0,为单调递增区间。最大值在右端点取到。20. (本小题满分12分)如图BCD与MCD都是边长为2的正三角形,平面MCD平面BCD,AB平面BCD,。(1) 求点A到平面MBC的距离;(2) 求平面ACM与平面BCD所成二面角的正弦值。【解析】本题以图形拼折为载体主要考查了考查立体图形的空间感、点到直线的距离、二面角、空间向量、二面角平面角的判断有关知识,同时也考查了空间想象能力和推理能力解法一:(1)取CD中点O,连OB,OM,则OBCD,OMCD.又
10、平面平面,则MO平面,所以MOAB,A、B、O、M共面.延长AM、BO相交于E,则AEB就是AM与平面BCD所成的角.OB=MO=,MOAB,MO/面ABC,M、O到平面ABC的距离相等,作OHBC于H,连MH,则MHBC,求得:OH=OCsin600=,MH=,利用体积相等得:。(2)CE是平面与平面的交线.由(1)知,O是BE的中点,则BCED是菱形.作BFEC于F,连AF,则AFEC,AFB就是二面角A-EC-B的平面角,设为.因为BCE=120,所以BCF=60. ,所以,所求二面角的正弦值是.【点评】传统方法在处理时要注意到辅助线的处理,一般采用射影、垂线、平行线等特殊位置的元素解决
11、解法二:取CD中点O,连OB,OM,则OBCD,OMCD,又平面平面,则MO平面.以O为原点,直线OC、BO、OM为x轴,y轴,z轴,建立空间直角坐标系如图.OB=OM=,则各点坐标分别为O(0,0,0),C(1,0,0),M(0,0,),B(0,-,0),A(0,-,2),(1)设是平面MBC的法向量,则,由得;由得;取,则距离(2),.设平面ACM的法向量为,由得.解得,取.又平面BCD的法向量为,则设所求二面角为,则.【点评】向量方法作为沟通代数和几何的工具在考察中越来越常见,此类方法的要点在于建立恰当的坐标系,便于计算,位置关系明确,以计算代替分析,起到简化的作用,但计算必须慎之又慎2
12、1. (本小题满分高考资源*网12分)设椭圆,抛物线。(1) 若经过的两个焦点,求的离心率;(2) 设A(0,b),,又M、N为与不在y轴上的两个交点,若AMN的垂心为,且QMN的重心在上,求椭圆和抛物线的方程。【解析】考查椭圆和抛物线的定义、基本量,通过交点三角形来确认方程。(1)由已知椭圆焦点(c,0)在抛物线上,可得:,由。(2)由题设可知M、N关于y轴对称,设,由的垂心为B,有。 由点在抛物线上,解得:故,得重心坐标. 由重心在抛物线上得:,又因为M、N在椭圆上得:,椭圆方程为,抛物线方程为。22. (本小题满分14分高考资源*网)证明以下命题:(1) 对任一正整a,都存在整数b,c(
13、bc),使得成等差数列。(2) 存在无穷多个互不相似的三角形,其边长为正整数且成等差数列。【解析】作为压轴题,考查数学综合分析问题的能力以及创新能力。 (1)考虑到结构要证,;类似勾股数进行拼凑。证明:考虑到结构特征,取特值满足等差数列,只需取b=5a,c=7a,对一切正整数a均能成立。结合第一问的特征,将等差数列分解,通过一个可做多种结构分解的因式说明构成三角形,再证明互不相似,且无穷。证明:当成等差数列,则,分解得:选取关于n的一个多项式,做两种途径的分解对比目标式,构造,由第一问结论得,等差数列成立,考察三角形边长关系,可构成三角形的三边。下证互不相似。任取正整数m,n,若m,相似:则三边对应成比例, 由比例的性质得:,与约定不同的值矛盾,故互不相似。