《数据仓库和数据挖掘题库.docx》由会员分享,可在线阅读,更多相关《数据仓库和数据挖掘题库.docx(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、一、填空题(X 分)、数据仓库就是一个面向主题的、集成的、相对稳定的、反映历史变化的数据 集合。、元数据是描述数据仓库内数据的结构和建立方法的数据,它为访问数据仓库 提供了一个信息目录,根据数据用途的不同可将数据仓库的元数据分为技术元数 据和业务元数据两类。、数据处理通常分成两大类:联机事务处理和联机分析处理。、是基于关系数据库的实现,而是基于多维数据结构组织的实现。、调和数据是存储在企业级数据仓库和操作型数据存储中的数据。、数据抽取的两个常见类型是静态抽取和增量抽取。静态抽取用于最初填充数 据仓库,增量抽取用于进行数据仓库的维护。、维度表普通由主键、分类层次和描述属性组成。对于主键可以选择两
2、种方式: 一种是采用自然键,另一种是采用代理键。、雪花型模式是对星型模式维表的进一步层次化和规范化来消除冗余的数据。、 数据仓库中存在不同综合级别的数据。普通把数据分成 个级别:早期细节级、当前细节级、轻度综合级和高度综合级。、数据仓库的概念模型通常采用值幽甦来进行设计,要求将其个组成部 分(包括名称、维度、类别、层次和度量)全面地描述出来。、确定了数据仓库的粒度模型以后,为提高数据仓库的使用性能,还需要根据 用户需求设计聚合模型。、粒度是对数据仓库中数据的综合程度高低的一个衡量。粒度越小,细节程度 越高,综合程度越低,回答查询的种类越多。、数据仓库的数据量通常较大,且数据普通很少更新,可以通
3、过设计和优化室 引结构来提高数据存取性能。、聚类分析包括连续型、二值离散型、多值离散型和混合类型种类型描述属 性的相似度计算方法。、的实现方式有以下两种:基于关系数据库系统的实现和基于多维数据库系统的实现。27.何谓文本挖掘?它与信息检索有什么关系异同。文本挖掘是从大量文本数据中提取以前未知的、实用的、可理解的、 可操作的知识的过程。它与信息检索之间有以下几方面的区别:方法论不同:信息检索是目标驱动的,用户需要明确提出查询要求; 而文本挖掘结果独立于用户的信息需求,是用户无法预知的。着眼点不同:信息检索着重于文档中字、词和链接;而文本挖掘在 于理解文本的内容和结构。目的不同:信息检索的目的在于
4、匡助用户发现资源,即从大量的文 本中找到满足其查询请求的文本子集;而文本挖掘是为了揭示文本 中隐含的知识。评价方法不同:信息检索用查准率和查全率来评价其性能。而文本 挖掘采用收益、置信度、简洁性等来衡量所发现知识的有效性、可 用性和可理解性。使用场合不同:文本挖掘是比信息检索更高层次的技术,可用于信息检索技术不 能解决的许多场合。一方面,这两种技术各有所长,有各自合用的场合;另一方 面,可以利用文本挖掘的研究成果来提高信息检索的精度和效率,改善检索结果 的组织,使信息检索系统发展到一个新的水平。四、论述题( 分)、简述数据仓库设计的三级模型的基本内容。()概念模型设计是在较高的抽象层次上的设计
5、,其主要内容包括:界定系统 边界和确定主要的主题域。()逻辑模型设计的主要内容包括:分析主题域、确定粒度层次划分、确定数 据分割策略、定义关系模式、定义记录系统。()物理数据模型设计的主要内容包括:确定数据存储结构、确定数据存放位 置、确定存储分配以及确定索引策略等。、举例说明聚类分析的典型应用。商业:匡助市场分析人员从客户基本库中发现不同的客户群,并且用不同的购 买模式描述不同客户群的特征。生物学:推导植物或者动物的分类,对基于进行分类,获得对种群中固有结构 的认识。文档分类其他:如地球观测数据库中相似地区的确定;各类保险投保人的分组;一个城 市中不同类型、价值、地理位置房子的分组等。聚类分
6、析还可作为其他数据挖掘算法的预处理:即先进行聚类,然后再进行分 类等其他的数据挖掘。聚类分析是一种数据简化技术,它把基于相似数据特征的 变量或者个案组合在一起。、简述算法的基本思想及其主算法的基本步骤。答:首先找出最有判别力的因素,然后把数据分成多个子集,每一个子集又选择 最有判别力的因素进一步划分,向来进行到所有子集仅包含同一类型的数据为 止。最后得到一棵决策树,可以用它来对新的样例进行分类。主算法包括如下几步:从训练集中随机选择一个既含正例又含反例的子集称为窗口 ;用“建树算法”对当前窗口形成一棵决策树;对训练集窗口除外中例子用所得决策树进行类别判定,找出错判的例子;若存在错判的例子,把它
7、们插入窗口,重复步骤,否则结束。、简述 平均算法的输入、输出及聚类过程 流程。输入:簇的数目和包含个对象的数据集。输出:个簇,使平方误差准则最小。步骤:任意选择个对象作为初始的簇中心;计算其它对象与这 个中心的距离,然后把每一个对象归入离它“最近”的簇; 计算各簇中对象的平均值,然后重新选择簇中心离平均值“最近”的对象 值;重复第第 步直到簇中心再也不变化为止。、简述处理空缺值的方法。忽略该记录;去掉属性;手工填写空缺值;使用默认值;使用属性平均值;使用同类样本平均值;预测最可能的值。、数据仓库的逻辑模型通常采用星型图法来进行设计,要求将星型的各类逻辑 实体完整地描述出来。、当维表中的主键在事
8、实表中没有与外键关联时,这样的维称为退化维。它于 事实表并无关系,但有时在查询限制条件(如定单号码、出货单编号等)中需要 用到。、数据仓库数据库常见的存储优化方法包括表的归并与簇文件、反向规范化引 入冗余、表的物理分割(分区)。、两种常用的大数据集的数据概化方法是数据立方体的方法(或者)和面向属性的归纳方法。、目前,使用的多维数据模型主要有星型模型、雪花模型、星网模型、第三范 式等。、按照事实表中度量的可加性情况,可以把事实表对应的事实分为种类型: 事务事实、快照事实、线性项目事实和事件事实。、提供了所有业务数据的允许整合试图,可以作为传统报表、在线分析处理、关键性能指示器记分卡和数据挖掘的基
9、础。、确定性时间序列分析就是设法消除随机型波动,拟合确定性趋势,于是形成 了长期趋势分析、豆变期逝和循环变动测定等一系列确定性时间序列分析方 法。二、名词解释数据仓库:是一种新的数据处理体系结构,是面向主题的、集成的、不可更 新的稳定性、随时间不断变化不同时间的数据集合,为企业决策支持系统提 供所需的集成信息。孤立点:指数据库中包含的一些与数据的普通行为或者模型不一致的异 常数据。0:是在 的基础上发展起来的,以数据仓库为基础的数据分析处理,是共享多维信息的快速分析,是被专门设计用于支持复杂的分析操作,侧 重对分析人员和高层管理人员的决策支持。粒度:指数据仓库的数据单位中保存数据细化或者综合程
10、度的级别。粒度影 响存放在数据仓库中的数据量的大小,同时影响数据仓库所能回答查问询题的 细节程度。数据规范化:指将数据按比例缩放如更换大单位,使之落入一个特定的区 域(如 一)以提高数据挖掘效率的方法。规范化的常用方法有:最大一最小 规范化、零一均值规范化、小数定标规范化。决策树:是用样本的属性作为结点,用属性的取值作为分支的树结构。它是 分类规则挖掘的典型方法,可用于对新样本进行分类。数据挖掘:从大量的、不彻底的、有噪声的、含糊的、随机的数据中,提取 隐含在其中的、人们事先不知道的、但又是潜在实用的信息和知识的过程。数据归约:缩小数据的取值范围,使其更适合于数据挖掘算法的需要,并且 能够得到
11、和原始数据相同的分析结果。遗传算法:是一种优化搜索算法,它首先产生一个初始可行解群体,然后对 这个群体通过摹拟生物进化的选择、交叉、变异等遗传操作遗传到下一代群体, 并最终达到全局最优。聚类:是将物理或者抽象对象的集合分组成为多个类或者簇的过程,使得在同一个簇中的对象之间具有较高的相似度,而不同簇中的对象差别较 大。关联规则:同时满足最小支持度阈值和最小可信度阈值的规则称之为关联三、简答题1 .何谓数据挖掘?它有哪些方面的功能?从大量的、不彻底的、有噪声的、含糊的、随机的数据中,提取隐含在 其中的、人们事先不知道的、但又是潜在实用的信息和知识的过程称为数据 挖掘。相关的名称有知识发现、数据分析
12、、数据融合、决策支持等。数据挖掘的功能包括:概念描述、关联分析、分类与预测、聚类分析、 趋势分析、孤立点分析以及偏差分析等。2何谓数据仓库?为什么要建立数据仓库?数据仓库是一种新的数据处理体系结构,是面向主题的、集成的、不可 更新的稳定性、随时间不断变化不同时间的数据集合,为企业决策支持 系统提供所需的集成信息。建立数据仓库的目的有个:一是为了解决企业决策分析中的系统响应问题,数据仓库能提供比传统 事务数据库更快的大规模决策分析的响应速度。二是解决决策分析对数据的特殊需求问题。决策分析需要全面的、正确的集成数据,这是传统事务数据库不能直接提供的。三是解决决策分析对数据的特殊操作要求。决策分析是
13、面向专业用户而 非普通业务员,需要使用专业的分析工具,对分析结果还要以商业智能的方 式进行表现,这是事务数据库不能提供的。3 .列举操作型数据与分析型数据的主要区别。操作型数据 当前的、细节的 面向应用、事务驱动 频繁增、册h改 操作需求事先知道分析型数据历史的、综合的面向分析、分析驱动 几乎不更新,定期追加 分析需求事先不知道生命周期符合彻底不同的生命周期对性能要求高对性能要求宽松一次操作数据量小一次操作数据量大支持日常事务操作支持管理决策需求4 .何谓 和 ?它们的主要异同有哪些?即联机事务处理,是以传统数据库为基础、面向操作人员和低层 管理人员、对基本数据进行查询和增、册h改等的日常事务
14、处理。即联机分析处理,是在 基础上发展起来的、以数据仓库基础上的、面向 高层管理人员和专业分析人员、为企业决策支持服务。和的主要区别如下表:数据库数据数据库或者数据仓库数据细节性数据综合性数据当前数据历史数据时常更新不更新,但周期性刷新一次性处理的数据量小一次处理的数据量大对响应时间要求高响应时间合理用户数量大用户数据相对较少面向操作人员,支持日常操作面向决策人员,支持管理需要面向应用,事务驱动面向分析,分析驱动5 .何谓粒度?它对数据仓库有什么影响?按粒度组织数据的方式有哪些?粒度是指数据仓库的数据单位中保存数据细化或者综合程度的级别。粒 度影响存放在数据仓库中的数据量的大小,同时影响数据仓
15、库所能回答查 问询题的细节程度。按粒度组织数据的方式主要有:简单堆积结构轮转综合结构简单直接结构连续结构6 .简述数据仓库设计的三级模型及其基本内容。概念模型设计是在较高的抽象层次上的设计,其主要内容包括:界定系 统边界和确定主要的主题域。逻辑模型设计的主要内容包括:分析主题域、确定粒度层次划分、确定 数据分割策略、定义关系模式、定义记录系统。物理数据模型设计的主要内容包括:确定数据存储结构、确定数据存放 位置、确定存储分配以及确定索引策略等。在物理数据模型设计时主要考虑 的因素有 存取时间、空间利用率和维护代价等。提高性能的主要措施有划分粒度、数据分割、合并表、建立数据序列、 引入冗余、生成
16、导出数据、建立广义索引等。7 .在数据挖掘之前为什么要对原始数据进行预处理?原始业务数据来自多个数据库或者数据仓库,它们的结构和规则可能是 不同的,这将导致原始数据非常的杂乱、不可用,即使在同一个数据库中, 也可能存在重复的和不完整的数据信息,为了使这些数据能够符合数据挖 掘的要求,提高效率和得到清晰的结果,必须进行数据的预处理。为数据挖掘算法提供完整、干净、准确、有针对性的数据,减少算法的 计算量,提高挖掘效率和准确程度。8 .简述数据预处理方法和内容。数据清洗:包括填充空缺值,识别孤立点,去掉噪声和无关数据。数据集成:将多个数据源中的数据结合起来存放在一个一致的数据存储 中。需要注意不同数
17、据源的数据匹配问题、数值冲突问题和冗余问题等。数据变换:将原始数据转换成为适合数据挖掘的形式。包括对数据的汇 总、会萃、概化、规范化,还可能需要进行属性的重构。数据归约:缩小数据的取值范围,使其更适合于数据挖掘算法的需要, 并且能够得到和原始数据相同的分析结果。9 .简述数据清理的基本内容。尽可能赋予属性名和属性值明确的含义;统一多数据源的属性值编码; 去除无用的惟一属性或者键值如自动增长的 ;去除重复属性在某些分析中,年龄和出生日期可能就是重复的属性, 但在某些时候它们可能又是同时需要的去除可忽略字段大部份为空值的属性普通是没有什么价值的,如果不 去除可能造成错误的数据挖掘结果合理选择关联字
18、段对于多个关联性较强的属性,重复无益,只需选择 其中的部份用于数据挖掘即可,如价格、数据、金额去掉数据中的噪音、填充空值、丢失值和处理不一致数据。10 .简述处理空缺值的方法。忽略该记录;去掉属性;手工填写空缺值;使用默认值;使用属性平均值;使用同类样本平均值;预测最可能的值。11 .常见的分箱方法有哪些?数据平滑处理的方法有哪些?分箱的方法主要有: 统一权重法 又称等深分箱法 统一区间法 又称等宽分箱法最小燃法自定义区间法数据平滑的方法主要有:平均值法、边界值法和中值法。12 .何谓数据规范化?规范化的方法有哪些?写出对应的变换公式。将数据按比例缩放如更换大单位,使之落入一个特定的区域(如)
19、,称为规范化。规范化的常用方法有:最大一最小规范化:maxminx =(x mm) + mm(max - min) o o00零一均值规范化:x = X-xnx小数定标规范化:=a13 .数据归约的方法有哪些?为什么要进行维归约?数据立方体会萃维归约数据压缩数值压缩离散化和概念分层维归约可以去掉不重要的属性,减少数据立方体的维数,从而减少数据 挖掘处理的数据量,提高挖掘效率。14 .何谓聚类?它与分类有什么异同?聚类是将物理或者抽象对象的集合分组成为多个类或者簇的过程,使得在同一个簇中的对象之间具有较高的相似度,而不同簇中 的对象差别较大。聚类与分类不同,聚类要划分的类是未知的,分类则可按已知
20、规则进 行;聚类是一种无指导学习,它不依赖预先定义的类和带类标号的训练实 例,属于观察式学习,分类则属于有指导的学习,是示例式学习。15 .举例说明聚类分析的典型应用。商业:匡助市场分析人员从客户基本库中发现不同的客户群,并且用不 同的购买模式描述不同客户群的特征。生物学:推导植物或者动物的分类,对基于进行分类,获得对种群中固 有结构的认识。文档分类其他:如地球观测数据库中相似地区的确定;各类保险投保人的分组; 一个城市中不同类型、价值、地理位置房子的分组等。聚类分析还可作为其他数据挖掘算法的预处理:即先进行聚类,然后再 进行分类等其他的数据挖掘。聚类分析是一种数据简化技术,它把基于 相似数据
21、特征的变量或者个案组合在一起。16 .聚类分析中常见的数据类型有哪些?何谓相异度矩阵?它有什么特点?常见数据类型有区间标度变量、比例标度型变量、二元变量、标称型、 序数型以及混合类型等。相异度矩阵是用于存储所有对象两两之间相异度的 矩阵,为一个 维的单模矩阵。其特点是0如下所示:0 d(2,1)0d(3,1) d(3,2) 01 |Ld(n,1) d(n,2) . . oj17 .分类知识的发现方法主要有哪些?分类过程通常包括哪两个步骤?分类规则的挖掘方法通常有:决策树法、贝叶斯法、人工神经网络法、 粗糙集法和遗传算法。分类的过程包括步:首先在已知训练数据集上, 根据属性特征,为每一种类别找到
22、一个合理的描述或者模型,即分类规则; 然后根据规则对新数据进行分类。18 .什么是决策树?如何用决策树进行分类?决策树是用样本的属性作为结点,用属性的取值作为分支的树结构。 它是利用信息论原理对大量样本的属性进行分析和归纳而产生的。决策树 的根结点是所有样本中信息量最大的属性。树的中间结点是以该结点为根 的子树所包含的样本子集中信息量最大的属性。决策树的叶结点是样本的 类别值。决策树用于对新样本的分类,即通过决策树对新样本属性值的测试, 从树的根结点开始,按照样本属性的取值,逐渐沿着决策树向下,直到树 的叶结点,该叶结点表示的类别就是新样本的类别。决策树方法是数据挖 掘中非常有效的分类方法。1
23、9 .简述算法的基本思想及其主算法的基本步骤。首先找出最有判别力的因素,然后把数据分成多个子集,每一个子集 又选择最有判别力的因素进一步划分,向来进行到所有子集仅包含同一 类型的数据为止。最后得到一棵决策树,可以用它来对新的样例进行分类。主算法包括如下几步:从训练集中随机选择一个既含正例又含反例的子集称为窗口 ;用“建树算法”对当前窗口形成一棵决策树;对训练集窗口除外中例子用所得决策树进行类别判定,找出错判 的例子;若存在错判的例子,把它们插入窗口,重复步骤,否则结束。20 .简述算法的基本思想及其建树算法的基本步骤。首先找出最有判别力的因素,然后把数据分成多个子集,每一个子集 又选择最有判别
24、力的因素进一步划分,向来进行到所有子集仅包含同一 类型的数据为止。最后得到一棵决策树,可以用它来对新的样例进行分 类。建树算法的具体步骤如下:对当前例子集合,计算各特征的互信息;选择互信息最大的特征A ;把在A处取值相同的例子归于同一子集,A取几个值就得几个子集; 对既含正例又含反例的子集,递归调用建树算法;若子集仅含正例或者反例,对应分枝标上 或者,返回调用处。21 .设某事务项集构成如下表,填空完成其中支持度和置信度的计算。事务项集支持度规贝IJ置信度AA BAfBA-AAAA 一A BBB-A BA BA B22 .从信息处理角度看,神经元具有哪些基本特征?写出描述神经元状态的 方程并说
25、明其含义。基本特征:多输入、单输出;突触兼有兴奋和抑制两种性能;可时 间加权和空间加权;可产生脉冲;脉冲可进行传递;非 线性,有阈值。方程:Sj = fW ? 9 ,是神经元之间的连接强度,9,是阈 /值,是阶梯函数。23 .遗传算法与传统寻优算法相比有什么特点?遗传算法为群体搜索,有利于寻觅到全局最优解;遗传算法采用高效有方向的随机搜索,搜索效率高;遗传算法处理的对象是个体而不是参变量,具有广泛的应用领域;遗传算法使用适应值信息评估个体,不需要导数或者其他辅助信息,运算速度快,适应性好;遗传算法具有隐含并行性,具有更高的运行效率。24 .写出非对称二元变量相异度计算公式即系数,并计算下表中各
26、25 .简述 平均算法的输入、输出及聚类过程 流程。输入:簇的数目和包含个对象的数据集。输出:个簇,使平方误差准则最小。步骤:任意选择个对象作为初始的簇中心;计算其它对象与这 个中心的距离,然后把每一个对象归入离它“ 最近”的簇;计算各簇中对象的平均值,然后重新选择簇中心离平均值“最近” 的对象值;重复第第步直到簇中心再也不变化为止。26 .简述 中心点算法的输入、输出及聚类过程流程。输入:结果簇的数目,包含个对象的数据集输出:个簇,使得所有对象与其最近中心点的相异度总和最小。流程:随机选择个对象作为初始中心点;计算其它对象与这 个中心的距离,然后把每一个对象归入离它“ 最近”的簇;随机地选择一个非中心点对象,并计算用代替的总代价;如果 则用 代替,形成新的个中心点集合; 重复迭代第、 步,直到中心点不变为止。