《2023高二数学知识点总结归纳.docx》由会员分享,可在线阅读,更多相关《2023高二数学知识点总结归纳.docx(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 2023高二数学知识点总结归纳 柱体、锥体、台体的外表积与体积 (1)几何体的外表积为几何体各个面的面积的和。 (2)特别几何体外表积公式(c为底面周长,h为高,为斜高,l为母线) (3)柱体、锥体、台体的体积公式 (4)球体的外表积和体积公式:V=;S= 4、空间点、直线、平面的位置关系 公理1:假如一条直线的两点在一个平面内,那么这条直线是全部的点都在这个平面内。 应用:推断直线是否在平面内 用符号语言表示公理1: 公理2:假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 符号:平面和相交,交线是a,记作=a。 符号语言: 公理2的作用: 它是判定两个平(面相)交的
2、方法。 它说明两个平面的交线与两个平面公共点之间的关系:交线公共点。 它可以推断点在直线上,即证若干个点共线的重要依据。 公理3:经过不在同一条直线上的三点,有且只有一个平面。 推论:始终线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。 公理3及其推论作用: 它是空间内确定平面的依据 它是证明平面重合的依据 公理4:平行于同一条直线的两条直线相互平行 空间直线与直线之间的位置关系 异面直线定义:不同在任何一个平面内的两条直线 异面直线性质:既不平行,又不相交。 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线 异面直线所成角:作平行,令两线相交
3、,所得锐角或直角,即所成角。两条异面直线所成角的范围是(0,90,若两条异面直线所成的角是直角,我们就说这两条异面直线相互垂直。 求异面直线所成角步骤: A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特别的位置,顶点选在特别的位置上。 B、证明作出的角即为所求角 C、利用三角形来求角 (7)等角定理:假如一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。 (8)空间直线与平面之间的位置关系 直线在平面内有很多个公共点. 三种位置关系的符号表示:aa=Aa (9)平面与平面之间的位置关系:平行没有公共点; 相交有一条公共直线。=b 高二数学学问点总结归纳 一、集合、简
4、易规律(14课时,8个) 1.集合;2.子集;3.补集;4.交集;5.并集;6.规律连结词;7.四种命题;8.充要条件。 二、函数(30课时,12个) 1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩大;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。 三、数列(12课时,5个) 1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。 四、三角函数(46课时,17个) 1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.
5、单位圆中的三角函数线;5.同角三角函数的根本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。 五、平面对量(12课时,8个) 1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面对量的坐标表示;5.线段的定比分点;6.平面对量的数量积;7.平面两点间的距离;8.平移。 六、不等式(22课时,5个) 1.不等式;2.不等式的根本性质;3.不等
6、式的证明;4.不等式的解法;5.含肯定值的不等式。 七、直线和圆的方程(22课时,12个) 1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简洁线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。 八、圆锥曲线(18课时,7个) 1.椭圆及其标准方程;2.椭圆的简洁几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简洁几何性质;6.抛物线及其标准方程;7.抛物线的简洁几何性质。 九
7、、直线、平面、简洁何体(36课时,28个) 1.平面及根本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5.直线和平面垂直的判定与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14.异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个
8、平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球。 十、排列、组合、二项式定理(18课时,8个) 1.分类计数原理与分步计数原理;2.排列;3.排列数公式;4.组合;5.组合数公式;6.组合数的两共性质;7.二项式定理;8.二项绽开式的性质。 十一、概率(12课时,5个) 1.随机大事的概率;2.等可能大事的概率;3.互斥大事有一个发生的概率;4.相互独立大事同时发生的概率;5.独立重复试验。 选修(24个) 十二、概率与统计(14课时,6个) 1.离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估量;5.正态分布;6.
9、线性回归。 十三、极限(12课时,6个) 1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性。 十四、导数(18课时,8个) 1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、差、积、商的导数;5.复合函数的导数;6.根本导数公式;7.利用导数讨论函数的单调性和极值;8.函数的值和最小值。 十五、复数(4课时,4个) 1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法;4.复数的一元二次方程和二项方程的解法。 高二数学学问点总结 等腰直角三角形面积公式:S=a2/2,S=ch/2=c2/4(其中a为直角边,c为斜边,h为斜边上的高)。 面积公式 若假设等腰直角三角形两腰分别为a,b,底为c,则可得其面积: S=ab/2。 且由等腰直角三角形性质可知:底边c上的高h=c/2,则三角面积可表示为: S=ch/2=c2/4。 等腰直角三角形是一种特别的三角形,具有全部三角形的.性质:稳定性,两直角边相等直角边夹始终角锐角45,斜边上中线角平分线垂线三线合一。