《八年级数学下第二章 四边形全章教案 新湘教版_小学教育-小学学案.pdf》由会员分享,可在线阅读,更多相关《八年级数学下第二章 四边形全章教案 新湘教版_小学教育-小学学案.pdf(39页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 第二章 四边形 2.1 多边形(1)教学目标 1 通过具体情景了解多边形的概念,掌握四边形和多边形的内角和。2 会利用多边形的内角和进行计算。3 通过多边形内角和公式的推导过程,培养学生的发散思维能力,逐步提高推理的能力。4 通过现实中抽象出多边形概念,让学生再次体会数学来源于生活,从而认识到数学的应用价值,提高学习数学的热情。重点、难点:重点:多边形的概念,四边形和多边形的内角和 难点:多边形内角和公式的推到过程。教学过程 一 创设情境,导入新课 1 三角形的内角和等于多少?(180)2 四边形的内角和等于多少呢?为什么?四边形的内角和等于 360,理由是:连结 AC,则四边形 ABCD
2、被分成了两个三角形,因此四边形的内角和等于一个三角形的内角和的 2 倍。即:2 180=360 由此得到:四边形的内角和等于 360 2 观察下面图形,你能抽象出什么样的几何图形呢?在日常生活中我们经常会见到五边形、六边形、八边形等等。今天我们学习-3 6 多边形的内角和与外交和(1)(板书课题)二 合作交流,探究新知 1 请你说一说什么叫多边形?在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形。组成多边形的各条线段叫多边形的边,每相邻两条边的公共端点叫多边形的顶点,连结不相邻两个顶点的线段叫做多边形的对角线,相邻两边组成的角叫多边形的内角。简称多边形的角。说明:我们的课本今后说的多边
3、形都是凸多边形,即:多边形总在一条边所在的直线的同旁。2 五边形的内角和 如图,五边形的内角和等于多少呢?(交流讨论)估计学生会想到下面方法:方法 1 连结 AD,AC,则五边形别两条对角线分成了三个三角形,所以五边形的内角和 等于 3 180=540 方法 2 在五边形内取一点 O,连结 OA,OB,OC,OD,OE,则五边形被分成了五个三角形,但这五个三角形中以 O为顶点的五个角不是五边形的内角和,所以五边形的内角 和是:5 180-360=5 180-2 180=(5-2)180=540 引导学生把点 O 移到五边形的边上或者外面。方法 3 在 AB上取点 O,连结 OE,OD,OC.则
4、五边形被分成了四个三角形,但以 O为顶点的四个角不是五边形的内角,这四个角的和等于一个平角。所以五边形的内角和等于:4 180-180=(4-1)180=540 方法 4 取在五边形外取点 O连结 OA,OB,OC,OD,OE 得到了 4 个三角形,这四个三角形的内角中,哪些不是多边形的内角?这些角的和等于多少?OED,EOA,AOB,BOC,COD,ODE,这些角不是多边形的内角,它们刚好是一个三角形的内角和。所以五边形的内角和等于 4 180-180=540 归纳:这些方法的共同特点是什么?取点 O,将点 O 与五边形的各个顶点连结起来构成三角形,把多边形的内角和转化成三角形的内角和。3
5、多边形的内角和 根据方法 2,(在多边形内取点 O,把点 O与多边形 各个顶点连结)请你填写下表 图形 三角形个数 不是多边形的内角的和 多边形的内角和 六边形 七边形 n 边形 归纳:n 边形的内角和等于(n-2)180 三 应用迁移,巩固提高 例 1 如图,把ABC 的纸片沿着 DE折迭,当点 A落在四边形 BCED 内部时,则A 与 1+2 之间有一种数量关系始终保持不变,请找以找这个规律,你发现的规律是()A A=1+2,B 2 A=1+2,C 3 A=2 1+2,D 3 A=2(1+2)解:ADE=,AED=A=180-(ADE+AED)=180-=(1+2)例 2(1)十边形的内角
6、和等于 _.(2)如果十边形的每一个内角都相等,那么每一个内角等于 _.四 课堂练习,巩固提高 1.P 36 练习 1,2 和进行计算通过多边形内角和公式的推导过程培养学生的发散思维能力逐步提高推理的能力通过现实中抽象出多边形概念让学生再次体会数学来源于生活从而认识到数学的应用价值提高学习数学的热情重点难点重点多边形的概念四 四边形的内角和等于多少呢为什么四边形的内角和等于理由是连结则四边形被分成了两个三角形因此四边形的内角和等于一个三角形的内角和的倍即由此得到四边形的内角和等于观察下面图形你能抽象出什么样的几何图形呢日常生 知请你说一说什么叫多边形平面内由一些线段首尾顺次相接组成的封闭图形叫
7、做多边形组成多边形的各条线段叫多边形的边每相邻两条边的公共端点叫多边形的顶点连结不相邻两个顶点的线段叫做多边形的对角线相邻两边组成的角 补充:1 一个多边形的内角和不可能是()A 560 B 1080 C 720 D 1800 2 一个多边形的内角和是 2340,这个多边形是 _边形。3 一个多边形的边数增加 1,内角和增加多少呢?五 反思小结,拓展提高 这节课你有什么收获?这节课我们学习了四边形的内角和和 n 边形的内角和,根据 n 边形的内角和公式,如果知道 n 就可以求出多边形的内角和,如果知道多边形的内角和就可以求出边数。多边形的内角和公式我们是从五边形的内角和入手,然后把求法迁移到
8、n 边形,这种有特殊到一般的探究思路我们以后还会用到,请同学们用心领悟。六 作业 基础训练 P11 和进行计算通过多边形内角和公式的推导过程培养学生的发散思维能力逐步提高推理的能力通过现实中抽象出多边形概念让学生再次体会数学来源于生活从而认识到数学的应用价值提高学习数学的热情重点难点重点多边形的概念四 四边形的内角和等于多少呢为什么四边形的内角和等于理由是连结则四边形被分成了两个三角形因此四边形的内角和等于一个三角形的内角和的倍即由此得到四边形的内角和等于观察下面图形你能抽象出什么样的几何图形呢日常生 知请你说一说什么叫多边形平面内由一些线段首尾顺次相接组成的封闭图形叫做多边形组成多边形的各条
9、线段叫多边形的边每相邻两条边的公共端点叫多边形的顶点连结不相邻两个顶点的线段叫做多边形的对角线相邻两边组成的角 2.1 多边形(2)教学目标 1 了解多边形的外角和的概念、掌握多边形的外角和公式。2 了解正多边形的概念。3 了解四边形的不稳定性及生活中的运用。4 通过多边形内角和的探索,让学生体验从特殊到一般的思考方法。重点、难点 重点:多边形的外角的概念、多边形的外角和公式。难点:多边形外角和公式的推导过程。教学过程 一 创设情境,导入新课 1 如图,AB DE,AC DF,那么 A与 D有什么关系?为什么?你能有一句话表达这个结论吗?解:A=D,理由是:设 AC与 DE交于 C,AB DE
10、,AC DF A=ACD=D 如果一个角的两边和另一个角的两边分别平行,而且开口方向一致,那么这两个角相等。2 四边形的内角和=_,n 边形的内角和=_.3 什么叫三角形的外角?什么叫三角形的外角和?三角形的外角和等于 _.三角形的一边和另一边的延长线组成的角叫三角形的外角,三角形的每一个内角的外角(共三个)的和叫三角形的外交和,三角形的外角和等于 180 4 类似地,多边形一边和另一边的反向延长线组成的角叫多边形的外角,在每个顶点处取这个多边形的一个外角,它们的和叫多边形的外角和。5 我们知道多边形每多一条边,多边形的内角和就多 180,外角和多多少度呢?你猜猜看.你的猜想对吗?下面我们来学
11、习多边形的内角和与外角和(2)二 合作交流,探究新知 1 特殊多边形的外角和(1)等边三角形的每一个内角等于 _,每一个外角等于 _,外角和等于 _,(2)正方形的每一个内角等于 _,每一个外角等于 _,外交和等于 _,(3)如果无边的每个内角是相等的,这个五边形的每一个内角等于 _,每一个外角等于 _,外交和等于 _。(4)如果六边形的每个内角是相等的,这个六边形的每一个内角等于 _,每一个外角等于 _,外交和等于 _。从上面的多边形看到,边数增加,外角和并没有增加,都是 360,但这些多边形的是特殊的,是否任意的多边形内角和都等于 360 呢?2 普通多边形的外角和(1)四边形的外角和 如
12、图,四边形 ABCD 的四个外角1+2+3+4=?用什么方法来求?方法 1 量出这 4 个角的度数,然后相加,看等于多少?请你量 一量 P 113 图 3 87 中的四个外角。方法 2 我们知道四边形的四个内角的和是 360,四个外角与四个内角有什么关系呢?为了表达方便,我们把四个内角也用数字表示。(交流),估计学生会想到:和进行计算通过多边形内角和公式的推导过程培养学生的发散思维能力逐步提高推理的能力通过现实中抽象出多边形概念让学生再次体会数学来源于生活从而认识到数学的应用价值提高学习数学的热情重点难点重点多边形的概念四 四边形的内角和等于多少呢为什么四边形的内角和等于理由是连结则四边形被分
13、成了两个三角形因此四边形的内角和等于一个三角形的内角和的倍即由此得到四边形的内角和等于观察下面图形你能抽象出什么样的几何图形呢日常生 知请你说一说什么叫多边形平面内由一些线段首尾顺次相接组成的封闭图形叫做多边形组成多边形的各条线段叫多边形的边每相邻两条边的公共端点叫多边形的顶点连结不相邻两个顶点的线段叫做多边形的对角线相邻两边组成的角 1+5=180,2+6=180,3+7=180 4+8=180 1=180-5,2=180-6,3=180-7,4=180-8,1+2+3+4=4 180-(5+6+7+8)=4 180-360=360 方法 3:画 OA BC,OB AB,则2=AOB,画 O
14、C AD,则1=BOC,画 OD CD,则4=COD,3=AOD,AOB+BOC+COD+AOD=360,1+2+3+4=360.(2)n 边形的外角和等于多少呢?(交流讨论)n 边形的每一个外角与它相邻的内角的和是 _ n 边形的内角和加外角和等于 _ n 边形的内角和等于 _ n 边形的外角和等于 n 180(n-2)180 360 归纳:n 边形的外角和等于 360 3 正多边形的概念 观察下面多边形,它们的角和边有什么特点?(边都相等,角也都相等)在平面内,边都相等、角也都相等的多边形叫正多边形。4 四边形的不稳定性 动脑筋:四条边都相等的四边形(即菱形)它的四个角一定相等吗?观察下面
15、菱形,它们的四条边都是相等的,但只有中间一个的四个角是相等的。这个例子告诉我们四边形的四条边的长度不改变,但形状可以改变,这叫四边形的不稳定性。四边形的不稳定性在生活中既有好处也有害处,伸缩门就是利用了四边形的不稳定性,一些建筑物就要防止四边形的不稳定性,如下图的木桥栏杆加些斜条,就是为了防止四边形的不稳定性。三 应用迁移,巩固提高 例 1 一个多边形的内角和等于它的外角和的 5倍,它是几边形?解:设这个多边形是 n 边形,则它的内角和是(n2)180,外角 和等于 360,所以:(n2)180=5 360 解得:n=12 答:这个多边形是 12 边形.四 课堂练习,巩固提高 1 一个多边形的
16、每一个外角都等于 45,这个多边形是几边形?它的每一个内角等于多少度?和进行计算通过多边形内角和公式的推导过程培养学生的发散思维能力逐步提高推理的能力通过现实中抽象出多边形概念让学生再次体会数学来源于生活从而认识到数学的应用价值提高学习数学的热情重点难点重点多边形的概念四 四边形的内角和等于多少呢为什么四边形的内角和等于理由是连结则四边形被分成了两个三角形因此四边形的内角和等于一个三角形的内角和的倍即由此得到四边形的内角和等于观察下面图形你能抽象出什么样的几何图形呢日常生 知请你说一说什么叫多边形平面内由一些线段首尾顺次相接组成的封闭图形叫做多边形组成多边形的各条线段叫多边形的边每相邻两条边的
17、公共端点叫多边形的顶点连结不相邻两个顶点的线段叫做多边形的对角线相邻两边组成的角 2 正 12 边形的每一个内角等于多少度?每一个外角等于多少度?3 下图是三个完全相同的正多边形拼成的无缝隙不重迭的图形的一部分,这种多边形是几边形?五 反思小结,拓展提高 这节课我们学习了什么?六 作业 基础训练 P12 和进行计算通过多边形内角和公式的推导过程培养学生的发散思维能力逐步提高推理的能力通过现实中抽象出多边形概念让学生再次体会数学来源于生活从而认识到数学的应用价值提高学习数学的热情重点难点重点多边形的概念四 四边形的内角和等于多少呢为什么四边形的内角和等于理由是连结则四边形被分成了两个三角形因此四
18、边形的内角和等于一个三角形的内角和的倍即由此得到四边形的内角和等于观察下面图形你能抽象出什么样的几何图形呢日常生 知请你说一说什么叫多边形平面内由一些线段首尾顺次相接组成的封闭图形叫做多边形组成多边形的各条线段叫多边形的边每相邻两条边的公共端点叫多边形的顶点连结不相邻两个顶点的线段叫做多边形的对角线相邻两边组成的角 2.2 平行四边形 2.2.1 平行四边形的性质(1)教学目标:1 理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质 2 会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证 3 培养学生发现问题、解决问题的能力及逻辑推理能力 二、重点、难点 1 重点:
19、平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用 2 难点:运用平行四边形的性质进行有关的论证和计算 三、例题的意图分析 例 1 是教材 P41 的例 1,它是平行四边形性质的实际应用,题目比较简单,其目的就是让学生能运用平行四边形的性质进行有关的计算,讲课时,可以让学生来解答 例 2 是补充的一道几何证明题,即让学生学会运用平行四边形的性质进行有关的论证,又让学生从较简单的几何论证开始,提高学生的推理论证能力和逻辑思维能力,学会演绎几何论证的方法 此题应让学生自己进行推理论证 四、课堂引入 1我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行
20、四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形(2)表示:平行四边形用符号“”来表示 如图,在四边形 ABCD 中,AB DC,AD BC,那么四边形 ABCD 是平行四边形 平行四边形 ABCD 记作“ABCD”,读作“平行四边形 ABCD”AB/DC,AD/BC,四边形 ABCD 是平行四边形(判定);四边形 ABCD 是平行四边形 AB/DC,AD/BC(性质)注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角 而三角形对边是指一
21、个角的对边,对角是指一条边的对角(教学时要结合图形,让学生认识清楚)2【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下 和进行计算通过多边形内角和公式的推导过程培养学生的发散思维能力逐步提高推理的能力通过现实中抽象出多边形概念让学生再次体会数学来源于生活从而认识到数学的应用价值提高学习数学的热情重点难点重点多边形的概念四 四边形的内角和等于多少呢为什么四边形的内角和等于理由是连结则四边形被分成了两个三角形因此四边形的内角和等于一个三角形的内角和的倍即由此得到四边形的内角和等于观察下面图形你能抽象出什么样的几何图形呢日常生
22、知请你说一说什么叫多边形平面内由一些线段首尾顺次相接组成的封闭图形叫做多边形组成多边形的各条线段叫多边形的边每相邻两条边的公共端点叫多边形的顶点连结不相邻两个顶点的线段叫做多边形的对角线相邻两边组成的角 让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行根据并行线的性质可知,在平行四边形中,相邻的角互为补角(相邻的角指四边形中有一条公共边的两个角 注意和第一章的邻角相区别 教学时结合图形使学生分辨清楚)(2)猜想 平行四边形的对边相等、对角相
23、等 下面证明这个结论的正确性 已知:如图 ABCD,求证:AB CD,CB AD,B D,BAD BCD 分析:作 ABCD 的对角线 AC,它将平行四边形分成 ABC 和 CDA,证明这两个三角形全等即可得到结论(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题)证明:连接 AC,AB CD,AD BC,1 3,2 4 又 AC CA,ABC CDA(ASA)AB CD,CB AD,B D 又 1 4 2 3,BAD BCD 由此得到:平行四边形性质 1 平行四边形的对边相等 平行四边形性质 2 平行四边形的对角相等 五、例习题分析 例 1(教材
24、 P41例 1)例 2(补充)如图,在平行四边形 ABCD 中,AE=CF,求证:AF=CE 分析:要证 AF=CE,需证 ADF CBE,由于四边形 ABCD 是平行四边形,因此有 D=B,AD=BC,AB=CD,又 AE=CF,根据等式性质,可得 BE=DF 由“边角边”可得出所需要的结论 证明略 和进行计算通过多边形内角和公式的推导过程培养学生的发散思维能力逐步提高推理的能力通过现实中抽象出多边形概念让学生再次体会数学来源于生活从而认识到数学的应用价值提高学习数学的热情重点难点重点多边形的概念四 四边形的内角和等于多少呢为什么四边形的内角和等于理由是连结则四边形被分成了两个三角形因此四边
25、形的内角和等于一个三角形的内角和的倍即由此得到四边形的内角和等于观察下面图形你能抽象出什么样的几何图形呢日常生 知请你说一说什么叫多边形平面内由一些线段首尾顺次相接组成的封闭图形叫做多边形组成多边形的各条线段叫多边形的边每相邻两条边的公共端点叫多边形的顶点连结不相邻两个顶点的线段叫做多边形的对角线相邻两边组成的角 六、随堂练习 1填空:(1)在 ABCD 中,A=50,则 B=度,C=度,D=度(2)如果 ABCD 中,A B=240,则 A=度,B=度,C=度,D=度(3)如果 ABCD 的周长为 28cm,且 AB:BC=2 5,那么 AB=cm,BC=cm,CD=cm,CD=cm 2如图
26、 4.3 9,在 ABCD 中,AC 为对角线,BE AC,DF AC,E、F 为垂足,求证:BE DF 七、课后练习 1(选择)在下列图形的性质中,平行四边形不一定具有的是()(A)对角相等(B)对角互补(C)邻角互补(D)内角和是 360 2在 ABCD 中,如果 EF AD,GH CD,EF 与 GH 相交与点 O,那么图中的平行四边形一共有()(A)4 个(B)5 个(C)8 个(D)9 个 3如图,AD BC,AE CD,BD 平分 ABC,求证 AB=CE 八、课后作业:P42 练习 九、课后反思 和进行计算通过多边形内角和公式的推导过程培养学生的发散思维能力逐步提高推理的能力通过
27、现实中抽象出多边形概念让学生再次体会数学来源于生活从而认识到数学的应用价值提高学习数学的热情重点难点重点多边形的概念四 四边形的内角和等于多少呢为什么四边形的内角和等于理由是连结则四边形被分成了两个三角形因此四边形的内角和等于一个三角形的内角和的倍即由此得到四边形的内角和等于观察下面图形你能抽象出什么样的几何图形呢日常生 知请你说一说什么叫多边形平面内由一些线段首尾顺次相接组成的封闭图形叫做多边形组成多边形的各条线段叫多边形的边每相邻两条边的公共端点叫多边形的顶点连结不相邻两个顶点的线段叫做多边形的对角线相邻两边组成的角 平行四边形的性质(2)一、教学目标:1 理解平行四边形中心对称的特征,掌
28、握平行四边形对角线互相平分的性质 2 能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题 3 培养学生的推理论证能力和逻辑思维能力 二、重点、难点 1 重点:平行四边形对角线互相平分的性质,以及性质的应用 2 难点:综合运用平行四边形的性质进行有关的论证和计算 三、例题的意图分析 本节课安排了两个例题,例 1 是一道补充题,它是性质 3 的直接运用,然后对例 1 进行了引申,可以根据学生的实际情况选讲,并归纳结论:过平行四边形对角线的交点作直线交对边或对边的延长线,所得的对应线段相等 例 1 与后面的三个图形是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的 例
29、2 是复习巩固小学学过的平行四边形面积计算这个例题比小学计算平行四边形面积的题加深了一步,需要应用勾股定理,先求得平行四边形一边上的高,然后才能应用公式计算 在以后的解题中,还会遇到需要应用勾股定理来求高或底的问题,在教学中要注意使学生掌握其方法 四、课堂引入 1复习提问:(1)什么样的四边形是平行四边形?四边形与平行四边形的关系是:(2)平行四边形的性质:具有一般四边形的性质(内角和是 360)角:平行四边形的对角相等,邻角互补 边:平行四边形的对边相等 2【探究】:请学生在纸上画两个全等的 ABCD 和 EFGH,并连接对角线 AC、BD 和 EG、HF,设它们分别交于点 O把这两个平行四
30、边形落在一起,在点 O 处钉一个图钉,将 ABCD绕点 O 旋转 180,观察它还和 EFGH 重合吗?你能从子中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;(2)平行四边形的对角线互相平分 和进行计算通过多边形内角和公式的推导过程培养学生的发散思维能力逐步提高推理的能力通过现实中抽象出多边形概念让学生再次体会数学来源于生活从而认识到数学的应用价值提高学习数学的热情重点难点重点多边形的概念四 四边形的内角和等于多少呢为什么四边形的内角和等于理由是连结则四边形被分成了两个三角形因此四边形的内
31、角和等于一个三角形的内角和的倍即由此得到四边形的内角和等于观察下面图形你能抽象出什么样的几何图形呢日常生 知请你说一说什么叫多边形平面内由一些线段首尾顺次相接组成的封闭图形叫做多边形组成多边形的各条线段叫多边形的边每相邻两条边的公共端点叫多边形的顶点连结不相邻两个顶点的线段叫做多边形的对角线相邻两边组成的角 五、例习题分析 例 1(补充)已知:如图 4 21,ABCD 的对角线 AC、BD 相交于点 O,EF 过点 O 与 AB、CD 分别相交于点 E、F 求证:OE OF,AE=CF,BE=DF 证明:在 ABCD 中,AB CD,1 2 3 4 又 OA OC(平行四边形的对角线互相平分)
32、,AOE COF(ASA)OE OF,AE=CF(全等三角形对应边相等)ABCD,AB=CD(平行四边形对边相等)ABAE=CD CF 即 BE=FD【引申】若例 1 中的条件都不变,将 EF 转动到图 b 的位置,那么例 1 的结论是否成立?若将 EF 向两方延长与平行四边形的两对边的延长线分别相交(图 c 和图 d),例 1 的结论是否成立,说明你的理由 解略 例 2 已知四边形 ABCD 是平行四边形,AB 10cm,AD 8cm,AC BC,求 BC、CD、AC、OA 的长以及ABCD 的面积 分析:由平行四边形的对边相等,可得 BC、CD 的长,在 Rt ABC 中,由勾股定理可得
33、AC 的长 再由平行四边形的对角线互相平分可求得 OA 的长,根据平行四边形的面积计算公式:平行四边形的面积=底高(高为此底上的高),可求得 ABCD 的面积(平行四边形的面积小学学过,再次强调“底”是对应着高说的,平行四边形中,任一边都可以作为“底”,“底”确定后,高也就随之确定了)3.平行四边形的面积计算 解略 六、随堂练习 1在平行四边形中,周长等于 48,已知一边长 12,求各边的长 已知 AB=2BC,求各边的长 和进行计算通过多边形内角和公式的推导过程培养学生的发散思维能力逐步提高推理的能力通过现实中抽象出多边形概念让学生再次体会数学来源于生活从而认识到数学的应用价值提高学习数学的
34、热情重点难点重点多边形的概念四 四边形的内角和等于多少呢为什么四边形的内角和等于理由是连结则四边形被分成了两个三角形因此四边形的内角和等于一个三角形的内角和的倍即由此得到四边形的内角和等于观察下面图形你能抽象出什么样的几何图形呢日常生 知请你说一说什么叫多边形平面内由一些线段首尾顺次相接组成的封闭图形叫做多边形组成多边形的各条线段叫多边形的边每相邻两条边的公共端点叫多边形的顶点连结不相邻两个顶点的线段叫做多边形的对角线相邻两边组成的角 已知对角线 AC、BD 交于点 O,AOD 与 AOB 的周长的差是 10,求各边的长 2如图,ABCD 中,AE BD,EAD=60,AE=2cm,AC+BD
35、=14cm,则 OBC 的周长是 _ _cm 3 ABCD 一内角的平分线与边相交并把这条边分成cm 5,cm 7的两条线段,则 ABCD的周长是 _ _cm 七、课后练习 1判断对错(1)在 ABCD 中,AC 交 BD 于 O,则 AO=OB=OC=OD()(2)平行四边形两条对角线的交点到一组对边的距离相等()(3)平行四边形的两组对边分别平行且相等()(4)平行四边形是轴对称图形()2在 ABCD 中,AC 6、BD 4,则 AB 的范围是 _ _ 3在平行四边形 ABCD 中,已知 AB、BC、CD 三条边的长度分别为(x+3),(x-4)和 16,则这个四边形的周长是 4公园有一片
36、绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB 15cm,AD 12cm,AC BC,求小路 BC,CD,OC 的长,并算出绿地的面积 八、课后作业:基础训练 P13,14 和进行计算通过多边形内角和公式的推导过程培养学生的发散思维能力逐步提高推理的能力通过现实中抽象出多边形概念让学生再次体会数学来源于生活从而认识到数学的应用价值提高学习数学的热情重点难点重点多边形的概念四 四边形的内角和等于多少呢为什么四边形的内角和等于理由是连结则四边形被分成了两个三角形因此四边形的内角和等于一个三角形的内角和的倍即由此得到四边形的内角和等于观察下面图形你能抽象出什么样的几何图形呢日常生
37、知请你说一说什么叫多边形平面内由一些线段首尾顺次相接组成的封闭图形叫做多边形组成多边形的各条线段叫多边形的边每相邻两条边的公共端点叫多边形的顶点连结不相邻两个顶点的线段叫做多边形的对角线相邻两边组成的角 2.2.2 平行四边形的判定(1)一、教学目标:1 在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法 2会综合运用平行四边形的判定方法和性质来解决问题 3培养用模拟、逆向联想及运动的思维方法来研究问题 二、重点、难点 3 重点:平行四边形的判定方法及应用 4 难点:平行四边形的判定定理与性质定理的灵活应用 三、例题的意图分析 本节课安排了 3个例题,例 1是教材 P4
38、5的例 5,它是平行四边形的性质与判定的综合运用,此题最好先让学生说出证明的思路,然后老师总结并指出其最佳方法 例 2与例 3都是补充的题目,其目的就是让学生能灵活和综合地运用平行四边形的判定方法和性质来解决问题例 3是一道拼图题,教学时,可以让学生动起来,边拼图边说明道理,即可以提高学生的动手能力和学生的思维能力,又可以提高学生的学习兴趣 如让学生再用四个不等边三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由 四、课堂引入 1欣赏图片、提出问题 展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?2【探究】:小明的父亲手中有一些木条,他想通过适当
39、的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?让学生利用手中的学具硬纸板条通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能说出你的做法及其道理吗?(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?(5)你还能找出其它方法吗?从探究中得到:平行四边形判定方法 1 两组对边分别相等的四边形是平行四边形。平行四边形判定方法 2 对角线互相平分的四边形是平行四边形。五、例习题分析 例 1(教材 P45 例 5)已知:如图 AB
40、CD 的对角线 AC、BD 交于点 O,E、F 是 AC 上的两点,并且 AE=CF 和进行计算通过多边形内角和公式的推导过程培养学生的发散思维能力逐步提高推理的能力通过现实中抽象出多边形概念让学生再次体会数学来源于生活从而认识到数学的应用价值提高学习数学的热情重点难点重点多边形的概念四 四边形的内角和等于多少呢为什么四边形的内角和等于理由是连结则四边形被分成了两个三角形因此四边形的内角和等于一个三角形的内角和的倍即由此得到四边形的内角和等于观察下面图形你能抽象出什么样的几何图形呢日常生 知请你说一说什么叫多边形平面内由一些线段首尾顺次相接组成的封闭图形叫做多边形组成多边形的各条线段叫多边形的
41、边每相邻两条边的公共端点叫多边形的顶点连结不相邻两个顶点的线段叫做多边形的对角线相邻两边组成的角 求证:四边形 BFDE 是平行四边形 分析:欲证四边形 BFDE 是平行四边形可以根据判定方法 2 来证明(证明过程参看教材)问;你还有其它的证明方法吗?比较一下,哪种证明方法简单 例 2(补充)已知:如图,A B BA,B C CB,C A AC 求证:(1)ABC B,CAB A,BCA C;(2)ABC 的顶点分别是 B C A各边的中点 证明:(1)A B BA,C B BC,四边形 ABCB 是平行四边形 ABC B(平行四边形的对角相等)同理 CAB A,BCA C(2)由(1)证得四
42、边形 ABCB 是平行四边形同理,四边形 ABA C 是平行四边形 AB B C,AB A C(平行四边形的对边相等)B C A C 同理 B A C A,A B C B ABC 的顶点 A、B、C 分别是 B C A的边 B C、C A、A B的中点 例 3(补充)小明用手中六个全等的正三角形做拼图游戏时,拼成一个六边形 你能在图中找出所有的平行四边形吗?并说说你的理由 解:有 6 个平行四边形,分别是 ABOF,ABCO,BCDO,CDEO,DEFO,EFAO 理由是:因为正 ABO 正 AOF,所以 AB=BO,OF=FA 根据“两组对边分别相等的四边形是平行四边形”,可知四边形 ABC
43、D 是平行四边形其它五个同理 六、随堂练习 1如图,在四边形 ABCD 中,AC、BD 相交于点 O,(1)若 AD=8cm,AB=4cm,那么当 BC=_ _cm,CD=_ _cm 时,四边形 ABCD 为平行四边形;(2)若 AC=10cm,BD=8cm,那么当 AO=_ _cm,DO=_ _cm 时,四边形 ABCD 为平行四边形 2已知:如图,ABCD 中,点 E、F 分别在 CD、AB 上,DF BE,EF 交 BD 于点 O求证:EO=OF 3灵活运用如图:由火柴棒拼出的一列图形,第 n 个图形由(n+1)个等边三角形拼成,通过观察,和进行计算通过多边形内角和公式的推导过程培养学生
44、的发散思维能力逐步提高推理的能力通过现实中抽象出多边形概念让学生再次体会数学来源于生活从而认识到数学的应用价值提高学习数学的热情重点难点重点多边形的概念四 四边形的内角和等于多少呢为什么四边形的内角和等于理由是连结则四边形被分成了两个三角形因此四边形的内角和等于一个三角形的内角和的倍即由此得到四边形的内角和等于观察下面图形你能抽象出什么样的几何图形呢日常生 知请你说一说什么叫多边形平面内由一些线段首尾顺次相接组成的封闭图形叫做多边形组成多边形的各条线段叫多边形的边每相邻两条边的公共端点叫多边形的顶点连结不相邻两个顶点的线段叫做多边形的对角线相邻两边组成的角 分析发现:第 4 个图形中平行四边形
45、的个数为 _ _(6 个)第 8 个图形中平行四边形的个数为 _ _(20 个)七、课后练习 1(选择)下列条件中能判断四边形是平行四边形的是()(A)对角线互相垂直(B)对角线相等(C)对角线互相垂直且相等(D)对角线互相平分 2已知:如图,ABC,BD平分 ABC,DE BC,EF BC,求证:BE=CF 八、课后作业 基础训练 P15 和进行计算通过多边形内角和公式的推导过程培养学生的发散思维能力逐步提高推理的能力通过现实中抽象出多边形概念让学生再次体会数学来源于生活从而认识到数学的应用价值提高学习数学的热情重点难点重点多边形的概念四 四边形的内角和等于多少呢为什么四边形的内角和等于理由
46、是连结则四边形被分成了两个三角形因此四边形的内角和等于一个三角形的内角和的倍即由此得到四边形的内角和等于观察下面图形你能抽象出什么样的几何图形呢日常生 知请你说一说什么叫多边形平面内由一些线段首尾顺次相接组成的封闭图形叫做多边形组成多边形的各条线段叫多边形的边每相邻两条边的公共端点叫多边形的顶点连结不相邻两个顶点的线段叫做多边形的对角线相邻两边组成的角 2.2.2 平行四边形的判定(2)一、教学目标:1掌握用一组对边平行且相等来判定平行四边形的方法 2会综合运用平行四边形的四种判定方法和性质来证明问题 3通过平行四边形的性质与判定的应用,启迪学生的思维,提高分析问题的能力 二、重点、难点 1
47、重点:平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法 2难点:平行四边形的判定定理与性质定理的综合应用 三、例题的意图分析 本节课的两个例题都是补充的题目,目的是让学生能掌握平行四边形的第三种判定方法和会综合运用平行四边形的判定方法和性质来解决问题学生程度好一些的学校,可以适当地自己再补充一些题目,使同学们会应用这些方法进行几何的推理证明,通过学习,培养学生分析问题、寻找最佳解题途径的能力 四、课堂引入 1平行四边形的性质;2平行四边形的判定方法;3【探究】取两根等长的木条 AB、CD,将它们平行放置,再用两根木条 BC、AD加固,得到的四边形 ABCD 是平行四边形吗
48、?结论:一组对边平行且相等的四边形是平行四边形 五、例习题分析 例 1(补充)已知:如图,ABCD 中,E、F分别是 AD、BC的中点,求证:BE=DF 分析:证明 BE=DF,可以证明两个三角形全等,也可以证明 四边形 BEDF是平行四边形,比较方法,可以看出第二种方法简单 证明:四边形 ABCD 是平行四边形,AD CB,AD=CD E、F分别是 AD、BC的中点,DE BF,且 DE=21AD,BF=21BC DE=BF 四边形 BEDF 是平行四边形(一组对边平行且相等的四边形平行四边形)BE=DF 此题综合运用了平行四边形的性质和判定,先运用平行四边形的性质得到判定另一个四边形是平行
49、四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用知识较多,因此应使学生获得清晰的证明思路 和进行计算通过多边形内角和公式的推导过程培养学生的发散思维能力逐步提高推理的能力通过现实中抽象出多边形概念让学生再次体会数学来源于生活从而认识到数学的应用价值提高学习数学的热情重点难点重点多边形的概念四 四边形的内角和等于多少呢为什么四边形的内角和等于理由是连结则四边形被分成了两个三角形因此四边形的内角和等于一个三角形的内角和的倍即由此得到四边形的内角和等于观察下面图形你能抽象出什么样的几何图形呢日常生 知请你说一说什么叫多边形平面内由一些线段首尾顺次相接组成的封闭图形叫做多
50、边形组成多边形的各条线段叫多边形的边每相邻两条边的公共端点叫多边形的顶点连结不相邻两个顶点的线段叫做多边形的对角线相邻两边组成的角 例 2(补充)已知:如图,ABCD 中,E、F分别是 AC 上两点,且 BE AC 于 E,DF AC 于 F求证:四边形 BEDF是平行四边形 分析:因为 BE AC 于 E,DF AC于 F,所以 BE DF需再证明 BE=DF,这需要证明 ABE与 CDF全等,由角角边即可 证明:四边形 ABCD 是平行四边形,AB=CD,且 AB CD BAE=DCF BE AC于 E,DF AC 于 F,BE DF,且 BEA=DFC=90 ABE CDF(AAS)BE