2023-2024人教部编版初中数学七年级上册第一章有理数教案《1.5.3 近似数》.doc

上传人:学**** 文档编号:94696512 上传时间:2023-08-05 格式:DOC 页数:10 大小:42.50KB
返回 下载 相关 举报
2023-2024人教部编版初中数学七年级上册第一章有理数教案《1.5.3 近似数》.doc_第1页
第1页 / 共10页
2023-2024人教部编版初中数学七年级上册第一章有理数教案《1.5.3 近似数》.doc_第2页
第2页 / 共10页
点击查看更多>>
资源描述

《2023-2024人教部编版初中数学七年级上册第一章有理数教案《1.5.3 近似数》.doc》由会员分享,可在线阅读,更多相关《2023-2024人教部编版初中数学七年级上册第一章有理数教案《1.5.3 近似数》.doc(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、1.5.3近似数教案设计 一、教材分析先用生活中实例,列出描述一些事物的数量时,有时用准确数表示,有时不一定要说出它们的准确数量,只要知道它们大概是多少就可以了,从而引出了准确数和近似数的概念,再通过按四舍五入对圆周率3.14159265. 取近似数,然后引出精确度的概念。再通过例题学习加深对近似数和精确度的理解,最后由学生通过课堂练习来熟练掌握近似数、精确度的意义。二、学情分析在小学四年级学过省略万位后面的尾数,写出近似数,学生有了对近似数和四舍五入的认识,进而学习近似数和精确度问题,就相对容易多了,但对于下面三种数,学生难以理解和接受,要注意讲透:(1)带数位的数,要将它们先还原,再看这个

2、数最后一位数字所在的数位,就是精确到那一位;(2)用科学记数法表示的数,精确到的位数,先还原,再看这个数最后一位数字所在原数的数位,就是精确到那一位;(3)“五入”时需要连续进位的方法。三、教学目标分析1、理解准确数、近似数、精确度的意义;2、能准确地说出精确位及按要求进行四舍五入取近似数。理解近似数在实际生活中的应用,感受数学与生活的密切联系。四、教学重点与难点重点:近似数和精确度的意义。难点:给出带数位的近似数和用科学记数法表示的近似数,求其精确度;再按给定的精确度求其的近似数;“五入”时需要连续进位的方法。五、教法及策略分析教师让学生从具体的生活情境入手,通过探究活动发现近似数的实际作用

3、和特点,以及近似数与准确数的关系,理解近似数与准确数的概念。还结合按四舍五入对圆周率3.14159265. 取近似数(这是理解四舍五入法的关键),然后引出精确度的概念。通过例题讲解和巩固练习,最后概括出求近似数的方法: 1、一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。2、求一个数的近似数要按四舍五入法,精确到哪一位,就要看那一位后面的数,如果大于或等于5,就向前一位进一;如果小于5,就直接舍去。3、带数位的数,要将它们先还原,再看这个数最后一位数字所在的数位,就是精确到那一位;4、用科学记数法表示的数,精确到的位数,先还原,再看这个数最后一位数字所在原数的数位,就是精确到

4、那一位。5、需要注意两点:(1)两个近似数1.6与1.60表示的精确程度不一样。 (2)两个近似数6.3万与6.3 精确到的数位不同。注意:(1) 1.60后面的0不能省去,否则精确度就发生了改变。这个教法与策略的设计,学生有充分的感受素材和感受时间,逐步提高,水到渠成,符合了学生从感性到理性、从具体到抽象的认知规律。因此我们有理由认为此策略在实施的过程中也会与预期效果比较接近。六、媒体选择与设计 教师在教学过程中,应该充分运用多种教学媒体为学生提供观察的条件。本节的教学媒体选择与设计如下:媒体类型 媒体内容要点 所用时间 所得结论口述 生活中常见的数 1 激发学生学习兴趣阅读教材 问题1的数

5、据 1 发现数据不同讨论 得出准确数与近似数概念 2 理解近似数意义阅读教材 问题2的近似数 2 发现近似数不同讨论 得出精确度的概念 2 理解精确度的意义量一量 按引例要求求近似数 2 会按四舍五入求近似数课件 例1按要求求精确度 8 掌握近似数的意义课件 例2按要求求精确度 8 掌握精确度的意义讨论 例1、例2的方法 3 归纳求近似数和精确度方法课件 变式训练, 4 巩固新知,加深理解课件 学习拓展 4 提高能力训练课件 小结与练习 3 达到教学目标要求七、教学过程设计(一)创设情境,导入新课探究一:问题1: (1)初一(1)班有60名同学。 (2)我国领土面积约960万平方千米。 (3)

6、初一数学书有104页。 (4)小明的身高约1.60米问:这几个数有什么区别?归纳:这里的60、104都是与实际完全符合的准确数,而960万、1.60都不是准确数,是由四舍五入得来的,与实际数很接近的数。 设计意图:通过学生讨论,引出准确数和近似数的概念进而探究精确度的概念,使学生感受认知过程。探究二:问题2:按四舍五入对圆周率取近似数:有3(精确到个位)3.1(精确到0.1,或叫做精确到十分位)3.14(精确到0.01,或叫做精确到百分位)3.142(精确到0.001,或叫做精确到_)3.1416(精确到_,或叫做精确到_)设计意图:学生讨论后回答,教师对回答加以鼓励,然后教师引出精确度的概念

7、。使学生感受认知形成、发展的过程(二)探索新知,讲授新课 1、归纳概念(1)什么叫准确数?准确数 与 实际 完全符合的数 (2)什么叫近似数?近似数 与实际非常接近的数(3)什么叫精确度?精确度 表示一个近似数近似的程度2、巩固概念判断下列各数,哪些是近似数?哪些是准确数? 1 小时有60分。 绿化队今年植树约万棵。 小明到书店买了10本书。 一次数学测验中,有人得100分。 某区在校中学生近75万人。方法点拨:近似数带有“约、近”字眼。3、新课引例动动手,试试看:请同学们量一量,自己的课桌长是多少?例如:小王量的课桌长为1.025米,请按下列要求取这个数的近似数:(1) 四舍五入到百分位;(

8、2) 四舍五入到十分位;(3) 四舍五入到个位;解:(1)1.0251.03(2)1.0251.0(点拨:表示近似数时,不能简单地把1.0后面的“0”去掉。)(3)1.0251方法点拨:一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。4、探究例题例1按括号内的要求,用四舍五入法对下列各数取近似数:(1)2.692 575(精确到0.001)(2)1.804(精确到0.1)(3)1.804(精确到0.01)解:(1)2.692 5752.693 (2)1.8041.8 (3)1.8041.80方法点拨:求一个数的近似数要按四舍五入法,精确到哪一位,就要看那一位后面的数,如果大于

9、或等于5,就向前一位进一;如果小于5,就直接舍去。注意:第(3)题得1.80后面的0不能省去,否则精确度就发生了改变。例2 下列由四舍五入得到的近似数,各精确到哪一位?(1)43.82 (2)0.03086 (3)2.4 万 (4)2.59亿 (5) 1.30105 (6)2.4103解:(1)43.82精确到百分位 (2)0.03086精确到十万分位(3)2.4 万精确到千位 (4)2.59亿精确到百万位(5) 1.30105 精确到千位 (6)2.4103精确到百位方法点拨:(1)、(2)题都是一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位;(3)、(4)这类带数位的题,要将它们

10、先还原,再看这个数最后一位数字所在的数位,就是精确到那一位;(5)、(6)题是用科学记数法表示的数,精确到的位数,先还原,再看这个数最后一位数字所在原数的数位,就是精确到那一位。(三)变式训练,深化知识试一试:1、下列由四舍五入法得到的近似数,各精确到哪一位?(1)570.0 (2)0.0382 (3)9.04104 (4)4.10105 (5)3.0万 (6)369 538 000答:(1)570.0精确到_(2)0.0382精确到_(3)9.04104精确到_(4)4.10105精确到_(5)3.0万精确到_(6)369 538 000精确到百万位是_(点拨:用到连续进位法)2、填空:(1

11、)近似数3.60105精确到_(2)近似数6.0万精确到_ (3)369700,精确到千位是_方法点拨:(1)、用科学记数法表示的数精确到的位数,先还原3.60105360 000,再看数3.60的最后一位数字0所在的位数,即千位(2)、这类数的精确度和科学记数法的精确度的求法类似也是先还原,6.0万60 000,再看6.0中最后一位数字0所在的数位,即千位。(3)、369700精确到千位,应看它的后一位百位数字为7,应进1,千位满十再进1,前几位数字为370即3697003.70105(四)思维拓展练习怎样求精确值x的取值范围?李明测得一根钢管的长度约为0.8米。(1)说说这个近似数可能是由

12、哪些数四舍五入得来的?(2)根据测得的结果,你能求出钢管的准确长度x应在什么范围吗?答:0.75x0.85(五)知识回顾,学习小结谈谈你本节课的收获:这节课我们学了以下几个内容:1、学了准确数、近似数、精确度的概念;2、灵活运用近似数和精确度解决问题解题技巧:(1)一般地,一个近似数,四舍五入到哪一位就说似数精确到哪一位 。(2)用科学记数法表示或带有数位的近似数,如1.23x104,4.6万,都先还原成原数12300,46000 可知“1.23”这个3处在原数的百位,就说1.23x104精确到百位;“4.6万 ”这个6处在原数的千位,就说4.6万精确到千位。 需要注意两点:(1)两个近似数1

13、.6与1.60表示的精确程度不一样。 (2)两个近似数6.3万与6.3 精确到的数位不同。(六)布置作业,巩固新知教材46页练习及47页习题1.5第6题 (七)板书设计1、概念:准确数 与实际完全符合的数 近似数 与实际非常接近的数精确度 表示一个近似数近似的程度2、例题探究;例1:按括号内的要求,用四舍五入法对下列各数取近似数:(1)2.692 575(精确到0.001)(2)1.804(精确到0.1)(3)1.804(精确到0.01)解:(1)2.692 5752.693 (2)1.8041.8 (3)1.8041.80例2 下列由四舍五入得到的近似数,各精确到哪一位?(1)43.82 (

14、2)0.03086 (3)2.4 万 (4)2.59亿 (5) 1.30105 (6)2.4103解:(1)43.82精确到百分位 (2)0.03086精确到十万分位(3)2.4 万精确到千位 (4)2.59亿精确到百万位(5) 1.30105 精确到千位 (6)2.4103精确到百位(八)教学评价1、让学生在生活中体验。数学源于生活,生活中充满数学,并最终服务于生活。这堂课通过提供生活中的一些数据,例如:班级人数、学校总学生数、科技节活动过程中查询过的一些数据,让学生初步感受这些信息,引入准确数,接着让学生根据自己的生活经验,说说哪些是准确数,哪些是近似数,并让学生说说自己是如何来判断近似数

15、的。从学生找出“大约、达、近”等一些词可以看出:学生不仅体验到了这些数的近似数,而且明白了为什么。在此基础上引入“近似数”和“”,顺理成章,学生非常容易接受。2、让学生在比较中体验。比较是常用的一种数学思考方法。通过比较事物之间的相同点和不同点。便于抽取出事物普遍存在的规律、区分出个体独有的特征。只有经历这样的过程,才能使直观感受到的经验得以提升,进入学习数学化的过程。本课一开始在讲解“准确数”和“近似数”时,通过让学生比较一些数据,从而让学生明白这些数据意义的不同,进而感受到什么是“准确数”,什么是“近似数”,加深了学生的认识。3、近似数在日常生活中的重要作用。它与精确数不同,它仅表示某一对

16、象的一定范围。本课的学习是让学生认识近似数,理解近似数在实际生活中的作用及意义,掌握求近似数的方法。能根据实际问题的需要求一个数的近似数,培养学生的估计意识,发展学生的数感。(九)教学反思本教案的设计采取了“开放性的探究式”教学模式,整个过程是由问题展示到问题解决,教案在中间环节围绕“猜想讨论应用”组织教学,注重培养学生的观察、猜想、归纳、探究能力,做到广泛地让学生动手实践,大胆猜想,探究结论,使学生亲历知识发生、形成和发展过程。这样把教师的知识传授过程转化成学生认知的探索实践活动,把“教师为主导,学生为主体”的教学原则正真贯穿到教学的始终,将有力地促进学生勇于实践、大胆探索的优良品质的形成。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁