《2023年高考数学重要考点复习内容总结.docx》由会员分享,可在线阅读,更多相关《2023年高考数学重要考点复习内容总结.docx(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 2023高考数学重要考点复习内容总结 1、直线的倾斜角 定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特殊地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0180 2、直线的斜率 定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。 过两点的直线的斜率公式: 留意下面四点: (1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90; (2)k与P1、P2的挨次无关; (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
2、3、直线方程 点斜式: 直线斜率k,且过点 留意:当直线的斜率为0时,k=0,直线的方程是y=y1。当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。 考生必备数学高考学问点 一个推导 利用错位相减法推导等比数列的前n项和:Sn=a1+a1q+a1q2+a1qn-1, 同乘q得:qSn=a1q+a1q2+a1q3+a1qn, 两式相减得(1-q)Sn=a1-a1qn,Sn=(q1). 两个防范 (1)由an+1=qan,q0并不能马上断言an为等比数列,还要验证a10. (2)在运用等比数列的前n项和公式时,必需留意对q
3、=1与q1分类争论,防止因忽视q=1这一特别情形导致解题失误. 三种方法 等比数列的推断方法有: (1)定义法:若an+1/an=q(q为非零常数)或an/an-1=q(q为非零常数且n2且nN_),则an是等比数列. (2)中项公式法:在数列an中,an0且a=anan+2(nN_),则数列an是等比数列. (3)通项公式法:若数列通项公式可写成an=cqn(c,q均是不为0的常数,nN_),则an是等比数列. 注:前两种方法也可用来证明一个数列为等比数列. 高考常考重要数学考点 1.任意角 (1)角的分类: 按旋转方向不同分为正角、负角、零角。 按终边位置不同分为象限角和轴线角。 (2)终
4、边一样的角: 终边与角一样的角可写成+k360(kZ)。 (3)弧度制: 1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角。 规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|=,l是以角作为圆心角时所对圆弧的长,r为半径。 用弧度做单位来度量角的制度叫做弧度制。比值与所取的r的大小无关,仅与角的大小有关。 弧度与角度的换算:360弧度;180弧度。 弧长公式:l=|r,扇形面积公式:S扇形=lr=|r2. 2.任意角的三角函数 (1)任意角的三角函数定义: 设是一个任意角,角的终边与单位圆交于点P(x,y),那么角的正弦、余弦、正切分别是:sin=y,cos=x,tan=,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数。 (2)三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦。 3.三角函数线 设角的顶点在坐标原点,始边与x轴非负半轴重合,终边与单位圆相交于点P,过P作PM垂直于x轴于M。由三角函数的定义知,点P的坐标为(cos_,sin_),即P(cos_,sin_),其中cos=OM,sin=MP,单位圆与x轴的正半轴交于点A,单位圆在A点的切线与的终边或其反向延长线相交于点T,则tan=AT。我们把有向线段OM、MP、AT叫做的余弦线、正弦线、正切线。