2023年高考数学必修二知识点.docx

上传人:1564****060 文档编号:94250297 上传时间:2023-07-27 格式:DOCX 页数:16 大小:19.41KB
返回 下载 相关 举报
2023年高考数学必修二知识点.docx_第1页
第1页 / 共16页
2023年高考数学必修二知识点.docx_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《2023年高考数学必修二知识点.docx》由会员分享,可在线阅读,更多相关《2023年高考数学必修二知识点.docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 2023高考数学必修二知识点 2023高考数学必修二学问点 【篇一】 考点一:向量的概念、向量的根本定理 【内容解读】了解向量的实际背景,把握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,把握平面对量的根本定理。 留意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量一样;两个向量无法比拟大小,它们的模可比拟大小。 考点二:向量的运算 【内容解读】向量的运算要求把握向量的加减法运算,会用平行四边形法则、三角形法则进展向量的加减运算;把握实数与向量的积运算,理解两个向量共线的含义,会推断两个向量的平行关系;把握向量的数量积的运算,体会平面对量的数量

2、积与向量投影的关系,并理解其几何意义,把握数量积的坐标表达式,会进展平面对量积的运算,能运用数量积表示两个向量的夹角,会用向量积推断两个平面对量的垂直关系。 【命题规律】命题形式主要以选择、填空题型消失,难度不大,考察重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。 考点三:定比分点 【内容解读】把握线段的定比分点和中点坐标公式,并能娴熟应用,求点分有向线段所成比时,可借助图形来帮忙理解。 【命题规律】重点考察定义和公式,主要以选择题或填空题型消失,难度一般。由于向量应用的广泛性,常常也会与三角函数,解析几何一并考察,若消失在解答题中,难度以中档题为主,间或也以难

3、度略高的题目。 考点四:向量与三角函数的综合问题 【内容解读】向量与三角函数的综合问题是高考常常消失的问题,考察了向量的学问,三角函数的学问,到达了高考中试题的掩盖面的要求。 【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。 考点五:平面对量与函数问题的交汇 【内容解读】平面对量与函数交汇的问题,主要是向量与二次函数结合的问题为主,要留意自变量的取值范围。 【命题规律】命题多以解答题为主,属中档题。 考点六:平面对量在平面几何中的应用 【内容解读】向量的坐标表示实际上就是向量的代数表示.在引入向量的坐标表示后

4、,使向量之间的运算代数化,这样就可以将“形”和“数”严密地结合在一起.因此,很多平面几何问题中较难解决的问题,都可以转化为大家熟识的代数运算的论证.也就是把平面几何图形放到适当的坐标系中,给予几何图形有关点与平面对量详细的坐标,这样将有关平面几何问题转化为相应的代数运算和向量运算,从而使问题得到解决. 【命题规律】命题多以解答题为主,属中等偏难的试题。 【篇二】 一、直线与方程 (1)直线的倾斜角 定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特殊地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0180 (2)直线的斜率 定义:倾斜角不是90的直线,它

5、的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。 过两点的直线的斜率公式: 留意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90; (2)k与P1、P2的挨次无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 (3)直线方程 点斜式:直线斜率k,且过点 留意:当直线的斜率为0时,k=0,直线的方程是y=y1。 当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。 斜截式:,直线斜率为k,直线在

6、y轴上的截距为b 两点式:()直线两点, 截矩式: 其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。 一般式:(A,B不全为0) 留意:各式的适用范围特别的方程如: 平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数); (5)直线系方程:即具有某一共同性质的直线 (一)平行直线系 平行于已知直线(是不全为0的常数)的直线系:(C为常数) (二)垂直直线系 垂直于已知直线(是不全为0的常数)的直线系:(C为常数) (三)过定点的直线系 ()斜率为k的直线系:,直线过定点; ()过两条直线,的交点的直线系方程为 (为参数),其中直线不在直线系中。 (6)两直线平行与垂直 当,时

7、,; 留意:利用斜率推断直线的平行与垂直时,要留意斜率的存在与否。 (7)两条直线的交点 相交 交点坐标即方程组的一组解。 方程组无解;方程组有很多解与重合 (8)两点间距离公式:设是平面直角坐标系中的两个点, 则 (9)点到直线距离公式:一点到直线的距离 (10)两平行直线距离公式 在任始终线上任取一点,再转化为点到直线的距离进展求解。 二、圆的方程 1、圆的定义:平面内到肯定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。 2、圆的方程 (1)标准方程,圆心,半径为r; (2)一般方程 当时,方程表示圆,此时圆心为,半径为 当时,表示一个点;当时,方程不表示任何图形。 (3)求

8、圆方程的方法: 一般都采纳待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a,b,r;若利用一般方程,需要求出D,E,F; 另外要留意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。 3、直线与圆的位置关系: 直线与圆的位置关系有相离,相切,相交三种状况: (1)设直线,圆,圆心到l的距离为,则有; (2)过圆外一点的切线:k不存在,验证是否成立k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程 (3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y

9、0-b)(y-b)=r2 4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比拟来确定。 设圆, 两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比拟来确定。 当时两圆外离,此时有公切线四条; 当时两圆外切,连心线过切点,有外公切线两条,内公切线一条; 当时两圆相交,连心线垂直平分公共弦,有两条外公切线; 当时,两圆内切,连心线经过切点,只有一条公切线; 当时,两圆内含;当时,为同心圆。 留意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线 圆的帮助线一般为连圆心与切线或者连圆心与弦中点 三、立体几何初步 1、柱、锥、台、球的构造特征 (1)

10、棱柱: 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 (2)棱锥 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相像,其相像比等于顶点到截面距离与高的比的平方。 (3)棱台: 几何特征:上下底面是相像的平行多边形侧面是梯形侧棱交于原棱锥的顶点 (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成 几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面绽开图是一个矩形。 (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成 几何特征:底面是一个圆;母线交于圆锥的顶点;侧

11、面绽开图是一个扇形。 (6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成 几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面绽开图是一个弓形。 (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:球的截面是圆;球面上任意一点到球心的距离等于半径。 2、空间几何体的三视图 定义三视图:正视图(光线从几何体的前面对后面正投影);侧视图(从左向右)、 俯视图(从上向下) 注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。 3、空间几何体的直观图斜二测画法 斜二测画法特点:原来与x轴平行的线段仍旧与x

12、平行且长度不变; 原来与y轴平行的线段仍旧与y平行,长度为原来的一半。 4、柱体、锥体、台体的外表积与体积 (1)几何体的外表积为几何体各个面的面积的和。 (2)特别几何体外表积公式(c为底面周长,h为高,为斜高,l为母线) (3)柱体、锥体、台体的体积公式 (4)球体的外表积和体积公式:V=;S= 4、空间点、直线、平面的位置关系 公理1:假如一条直线的两点在一个平面内,那么这条直线是全部的点都在这个平面内。 应用:推断直线是否在平面内 用符号语言表示公理1: 公理2:假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 符号:平面和相交,交线是a,记作=a。 符号语言:

13、公理2的作用: 它是判定两个平面相交的方法。 它说明两个平面的交线与两个平面公共点之间的关系:交线公共点。 它可以推断点在直线上,即证若干个点共线的重要依据。 公理3:经过不在同一条直线上的三点,有且只有一个平面。 推论:始终线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。 公理3及其推论作用: 它是空间内确定平面的依据 它是证明平面重合的依据 公理4:平行于同一条直线的两条直线相互平行 空间直线与直线之间的位置关系 异面直线定义:不同在任何一个平面内的两条直线 异面直线性质:既不平行,又不相交。 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直

14、线 异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角。两条异面直线所成角的范围是(0,90,若两条异面直线所成的角是直角,我们就说这两条异面直线相互垂直。 求异面直线所成角步骤: A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特别的位置,顶点选在特别的位置上。 B、证明作出的角即为所求角 C、利用三角形来求角 (7)等角定理:假如一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。 (8)空间直线与平面之间的位置关系 直线在平面内有很多个公共点. 三种位置关系的符号表示:aa=Aa (9)平面与平面之间的位置关系:平行没有公共点; 相交有一条公共直线。=b

15、 5、空间中的平行问题 (1)直线与平面平行的判定及其性质 线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。 线线平行线面平行 线面平行的性质定理:假如一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。线面平行线线平行 (2)平面与平面平行的判定及其性质 两个平面平行的判定定理 (1)假如一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行 (线面平行面面平行), (2)假如在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。 (线线平行面面平行), (3)垂直于同一条直线的两个平面平行, 两个平面平行的性质定理

16、 (1)假如两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行线面平行) (2)假如两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行线线平行) 7、空间中的垂直问题 (1)线线、面面、线面垂直的定义 两条异面直线的垂直:假如两条异面直线所成的角是直角,就说这两条异面直线相互垂直。 线面垂直:假如一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。 平面和平面垂直:假如两个平面相交,所成的二面角(从一条直线动身的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。 (2)垂直关系的判定和性质定理 线面垂直判定定理和性质定理 判定定理

17、:假如一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。 性质定理:假如两条直线同垂直于一个平面,那么这两条直线平行。 面面垂直的判定定理和性质定理 判定定理:假如一个平面经过另一个平面的一条垂线,那么这两个平面相互垂直。 性质定理:假如两个平面相互垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。 9、空间角问题 (1)直线与直线所成的角 两平行直线所成的角:规定为。 两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。 两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不

18、大于直角的角叫做两条异面直线所成的角。 (2)直线和平面所成的角 平面的平行线与平面所成的角:规定为。 平面的垂线与平面所成的角:规定为。 平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。 求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。 在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线, 在解题时,留意挖掘题设中两个主要信息: (1)斜线上一点到面的垂线; (2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。 (3)二面角和二面角的平面角 二面角的定义:从一条直线动身的两个

19、半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。 二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。 直二面角:平面角是直角的二面角叫直二面角。 两相交平面假如所组成的二面角是直二面角,那么这两个平面垂直;反过来,假如两个平面垂直,那么所成的二面角为直二面角 求二面角的方法 定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角 垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角。 2023高考数学必修二学习方法 养成良好的学习数

20、学习惯 多质疑、勤思索、好动手、重归纳、留意应用。学生在学习数学的过程中,要把教师所传授的学问翻译成为自己的特别语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、用心上课、准时复习、独立作业、解决疑难、系统小结和课外学习几个方面。 准时了解、把握常用的数学思想和方法 中学数学学习要重点把握的的数学思想有以上几个:集合与对应思想,分类争论思想,数形结合思想,运动思想,转化思想,变换思想。 有了数学思想以后,还要把握详细的方法,比方:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在详细的方法中,常用的有:观看与试验,联想与类比,比拟与分类,分析与综合,归纳与演绎,一般与特别,有限与无限,抽象与概括等。 2023高考数学必修二学习技巧 必需用好你的数学笔记 登记的笔记只停留在纸上,要成为你自己的东西,必需专心去独立体会笔记里的每一个典型例题,每一个经典方法,每一个想法思路,完全理解并且会娴熟运用才是根本。 固然,课堂的问题解决了,其他的问题也就迎刃而解了,所以,高一的学生们,请不要轻易厌烦数学,由于多半是由于你不了解数学,其实它很和善,也很有魅力,试着专心去学,你肯定会胜利。 2023高考数学必修二学问点

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁