《2018年云南丽江中考数学真题及答案.pdf》由会员分享,可在线阅读,更多相关《2018年云南丽江中考数学真题及答案.pdf(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、20182018 年云南年云南丽江丽江中考数学真题及答案中考数学真题及答案一、填空题(共一、填空题(共 6 6 小题,每小题小题,每小题 3 3 分,满分分,满分 1818 分)分)1(3 分)1 的绝对值是2(3 分)已知点 P(a,b)在反比例函数 y=的图象上,则 ab=3(3 分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员 3451 人,将 3451 用科学记数法表示为4(3 分)分解因式:x24=5(3 分)如图,已知 ABCD,若=,则=6(3 分)在ABC 中,AB=,AC=5,若 BC 边上的高等于 3,则 BC 边的长为二、选择题(共二、选择题(共 8 8
2、小题,每小题小题,每小题 4 4 分,满分分,满分 3232 分分.每小题只有一个正确选项)每小题只有一个正确选项)7(4 分)函数 y=的自变量 x 的取值范围为()Ax0Bx1Cx0Dx18(4 分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A三棱柱B三棱锥C圆柱D圆锥9(4 分)一个五边形的内角和为()A540B450C360D18010(4 分)按一定规律排列的单项式:a,a2,a3,a4,a5,a6,第 n 个单项式是()AanBanC(1)n+1anD(1)nan11(4 分)下列图形既是轴对称图形,又是中心对称图形的是()A三角形B.
3、菱形C角D平行四边形12(4 分)在 RtABC 中,C=90,AC=1,BC=3,则A 的正切值为()A3BCD13(4 分)2017 年 12 月 8 日,以“数字工匠玉汝于成,数字工坊溪达四海”为主题的2017 一带一路数学科技文化节玉溪暨第 10 届全国三维数字化创新设计大赛(简称“全国3D 大赛”)总决赛在玉溪圆满闭幕某学校为了解学生对这次大赛的了解程度,在全校 1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图下列四个选项错误的是()A 抽取的学生人数为 50 人B“非常了解”的人数占抽取的学生人数的 12%Ca=72D全校“不了
4、解”的人数估计有 428 人14(4 分)已知 x+=6,则 x2+=()A38B36C34D32三、解答题(共三、解答题(共 9 9 小题,满分小题,满分 7070 分)分)15(6 分)计算:2cos45()1(1)016(6 分)如图,已知 AC 平分BAD,AB=AD求证:ABCADC17(8 分)某同学参加了学校举行的“五好小公民红旗飘飘”演讲比赛,7 名评委给该同学的打分(单位:分)情况如下表:评委评委 1评委 2评委 3评委 4评委 5评委 6评委 7打分6878578(1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数18(6 分)某社区积极响应正在开展
5、的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的 2 倍,并且甲工程队完成 300 平方米的绿化面积比乙工程队完成 300 平方米的绿化面积少用 3 小时,乙工程队每小时能完成多少平方米的绿化面积?19(7 分)将正面分别写着数字 1,2,3 的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为 x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张
6、卡片,记该卡片上的数字为 y(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果(2)求取出的两张卡片上的数字之和为偶数的概率 P20(8 分)已知二次函数 y=x2+bx+c 的图象经过 A(0,3),B(4,)两点(1)求 b,c 的值(2)二次函数 y=x2+bx+c 的图象与 x 轴是否有公共点,求公共点的坐标;若没有,请说明情况21(8 分)某驻村扶贫小组为解决当地贫困问题,带领大家致富经过调查研究,他们决定利用当地生产的甲乙两种原料开发 A,B 两种商品,为科学决策,他们试生产 A、B 两种商品 100 千克进行深入研究,已知现有甲种原料 29
7、3 千克,乙种原料 314 千克,生产 1 千克 A商品,1 千克 B 商品所需要的甲、乙两种原料及生产成本如下表所示甲种原料(单位:千克)乙种原料(单位:千克)生产成本(单位:元)A 商品32120B 商品2.53.5200设生产 A 种商品 x 千克,生产 A、B 两种商品共 100 千克的总成本为 y 元,根据上述信息,解答下列问题:(1)求 y 与 x 的函数解析式(也称关系式),并直接写出 x 的取值范围;(2)x 取何值时,总成本 y 最小?22(9 分)如图,已知 AB 是O 上的点,C 是O 上的点,点 D 在 AB 的延长线上,BCD=BAC(1)求证:CD 是O 的切线;(
8、2)若D=30,BD=2,求图中阴影部分的面积23(12 分)如图,在平行四边形 ABCD 中,点 E 是 CD 的中点,点 F 是 BC 边上的点,AF=AD+FC,平行四边形 ABCD 的面积为 S,由 A、E、F 三点确定的圆的周长为 t(1)若ABE 的面积为 30,直接写出 S 的值;(2)求证:AE 平分DAF;(3)若 AE=BE,AB=4,AD=5,求 t 的值参考答案参考答案一、填空题(共一、填空题(共 6 6 小题,每小题小题,每小题 3 3 分,满分分,满分 1818 分)分)1(3.00 分)1 的绝对值是1【分析】第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个
9、绝对值的符号【解答】解:|1|=1,1 的绝对值是 1【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是 02(3.00 分)已知点 P(a,b)在反比例函数 y=的图象上,则 ab=2【分析】接把点 P(a,b)代入反比例函数 y=即可得出结论【解答】解:点 P(a,b)在反比例函数 y=的图象上,b=,ab=2故答案为:2【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键3(3.00 分)某地举办主题为“
10、不忘初心,牢记使命”的报告会,参加会议的人员 3451 人,将 3451 用科学记数法表示为3.451103【分析】科学记数法的表示形式为 a10n的形式,其中 1|a|10,n 为整数确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同 当原数绝对值大于 10 时,n 是正数;当原数的绝对值小于 1 时,n 是负数【解答】解:3451=3.451103,故答案为:3.451103【点评】此题考查科学记数法的表示方法科学记数法的表示形式为 a10n的形式,其中 1|a|10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值4(3.00 分)分
11、解因式:x24=(x+2)(x2)【分析】直接利用平方差公式进行因式分解即可【解答】解:x24=(x+2)(x2)故答案为:(x+2)(x2)【点评】本题考查了平方差公式因式分解能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反5(3.00 分)如图,已知 ABCD,若=,则=【分析】利用相似三角形的性质即可解决问题;【解答】解:ABCD,AOBCOD,=,故答案为【点评】本题考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型6(3.00 分)在ABC 中,AB=,AC=5,若 BC 边上的高等于 3,则 BC 边的长为9 或 1【分析】
12、ABC 中,ACB 分锐角和钝角两种:如图 1,ACB 是锐角时,根据勾股定理计算 BD 和 CD 的长可得 BC 的值;如图 2,ACB 是钝角时,同理得:CD=4,BD=5,根据 BC=BDCD 代入可得结论【解答】解:有两种情况:如图 1,AD 是ABC 的高,ADB=ADC=90,由勾股定理得:BD=5,CD=4,BC=BD+CD=5+4=9;如图 2,同理得:CD=4,BD=5,BC=BDCD=54=1,综上所述,BC 的长为 9 或 1;故答案为:9 或 1【点评】本题考查了勾股定理的运用,熟练掌握勾股定理是关键,并注意运用了分类讨论的思想解决问题二、选择题(共二、选择题(共 8
13、8 小题,每小题小题,每小题 4 4 分,满分分,满分 3232 分分.每小题只有一个正确选项)每小题只有一个正确选项)7(4.00 分)函数 y=的自变量 x 的取值范围为()Ax0 Bx1 Cx0 Dx1【分析】根据被开方数大于等于 0 列式计算即可得解【解答】解:1x0,x1,即函数 y=的自变量 x 的取值范围是 x1,故选:B【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为 0;(3)当函数表达式是二次根式时,被开方数非负8(4.00 分)下列图形是某几何体的三视图(其中主视图也称
14、正视图,左视图也称侧视图),则这个几何体是()A三棱柱B三棱锥C圆柱 D圆锥【分析】由三视图及题设条件知,此几何体为一个的圆锥【解答】解:此几何体是一个圆锥,故选:D【点评】考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,三视图的投影规则是:“主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等”9(4.00 分)一个五边形的内角和为()A540B450C360D180【分析】直接利用多边形的内角和公式进行计算即可【解答】解:解:根据正多边形内角和公式:180(52)=540,答:一个五边形的内角和是 540 度,故选:A【点评】此题主要考查了正多边形内角和,关键是掌握内角和的
15、计算公式10(4.00 分)按一定规律排列的单项式:a,a2,a3,a4,a5,a6,第 n 个单项式是()AanBanC(1)n+1anD(1)nan【分析】观察字母 a 的系数、次数的规律即可写出第 n 个单项式【解答】解:a,a2,a3,a4,a5,a6,(1)n+1an故选:C【点评】考查了单项式,数字的变化类,注意字母 a 的系数为奇数时,符号为正;系数字母a 的系数为偶数时,符号为负11(4.00 分)下列图形既是轴对称图形,又是中心对称图形的是()A三角形B菱形 C角D平行四边形【分析】根据轴对称图形与中心对称图形的概念求解【解答】解:A、三角形不一定是轴对称图形和中心对称图形,
16、故本选项错误;B、菱形既是轴对称图形又是中心对称图形,故本选项正确;C、角不一定是轴对称图形和中心对称图形,故本选项错误;D、平行四边形不一定是轴对称图形和中心对称图形,故本选项错误;故选:B【点评】此题主要考查了中心对称图形与轴对称图形的概念:判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180 度后与原图重合12(4.00 分)在 RtABC 中,C=90,AC=1,BC=3,则A 的正切值为()A3BCD【分析】根据锐角三角函数的定义求出即可【解答】解:在 RtABC 中,C=90,AC=1,BC=3,A 的正切值为=3,故选:A
17、【点评】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键13(4.00 分)2017 年 12 月 8 日,以“数字工匠玉汝于成,数字工坊溪达四海”为主题的 2017 一带一路数学科技文化节玉溪暨第 10 届全国三维数字化创新设计大赛(简称“全国 3D 大赛”)总决赛在玉溪圆满闭幕某学校为了解学生对这次大赛的了解程度,在全校1300 名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图下列四个选项错误的是()A抽取的学生人数为 50 人B“非常了解”的人数占抽取的学生人数的 12%Ca=72D全校“不了解”的人数估计有 428
18、 人【分析】利用图中信息一一判断即可解决问题;【解答】解:抽取的总人数为 6+10+16+18=50(人),故 A 正确,“非常了解”的人数占抽取的学生人数的=12%,故 B 正确,=360=72,故正确,全校“不了解”的人数估计有 1300=468(人),故 D 错误,故选:D【点评】本题考查条形统计图、扇形统计图等知识,解题的关键是熟练掌握基本概念,属于中考常考题型14(4.00 分)已知 x+=6,则 x2+=()A38B36C34D32【分析】把 x+=6 两边平方,利用完全平方公式化简,即可求出所求【解答】解:把 x+=6 两边平方得:(x+)2=x2+2=36,则 x2+=34,故
19、选:C【点评】此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键三、解答题(共三、解答题(共 9 9 小题,满分小题,满分 7070 分)分)15(6.00 分)计算:2cos45()1(1)0【分析】本题涉及零指数幂、负指数幂、锐角三角函数、二次根式化简 4 个考点在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果【解答】解:原式=3231=24【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见题型解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值、特殊角的锐角三角函数值等知识点16(6.00 分)如图,已知
20、AC 平分BAD,AB=AD求证:ABCADC【分析】根据角平分线的定义得到BAC=DAC,利用 SAS 定理判断即可【解答】证明:AC 平分BAD,BAC=DAC,在ABC 和ADC 中,ABCADC【点评】本题考查的是全等三角形的判定、角平分线的定义,掌握三角形全等的 SAS 定理是解题的关键17(8.00 分)某同学参加了学校举行的“五好小公民红旗飘飘”演讲比赛,7 名评委给该同学的打分(单位:分)情况如下表:评委评委 1评委 2评委 3评委 4评委 5评委 6评委 7打分6878578(1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数【分析】(1)根据众数与中
21、位数的定义求解即可;(2)根据平均数的定义求解即可【解答】解:(1)从小到大排列此数据为:5,6,7,7,8,8,8,数据 8 出现了三次最多为众数,7 处在第 4 位为中位数;(2)该同学所得分数的平均数为(5+6+72+83)7=7【点评】本题考查了平均数、众数与中位数,用到的知识点是:给定一组数据,出现次数最多的那个数,称为这组数据的众数中位数的定义:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数平均数=总数个数18(6.00 分)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造 已知甲工程队每小时能完成的绿化面积是乙工
22、程队每小时能完成的绿化面积的 2 倍,并且甲工程队完成 300 平方米的绿化面积比乙工程队完成 300 平方米的绿化面积少用 3 小时,乙工程队每小时能完成多少平方米的绿化面积?【分析】设乙工程队每小时能完成 x 平方米的绿化面积,则甲工程队每小时能完成 2x 平方米的绿化面积,根据工作时间=总工作量工作效率结合甲工程队完成 300 平方米的绿化面积比乙工程队完成 300 平方米的绿化面积少用 3 小时,即可得出关于 x 的分式方程,解之经检验后即可得出结论【解答】解:设乙工程队每小时能完成 x 平方米的绿化面积,则甲工程队每小时能完成 2x平方米的绿化面积,根据题意得:=3,解得:x=50,
23、经检验,x=50 是分式方程的解答:乙工程队每小时能完成 50 平方米的绿化面积【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键19(7.00 分)将正面分别写着数字 1,2,3 的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为 x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为 y(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果(2)
24、求取出的两张卡片上的数字之和为偶数的概率 P【分析】(1)首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果;(2)由(1)中的树状图,可求得抽取的两张卡片结果中数字之和为偶数的情况,然后利用概率公式求解即可求得答案【解答】解:(1)画树状图得:由树状图知共有 6 种等可能的结果:(1,2)、(1,3)、(2,1)、(2,3)、(3,1)、(3,2);(2)共有 6 种等可能结果,其中数字之和为偶数的有 2 种结果,取出的两张卡片上的数字之和为偶数的概率 P=【点评】此题考查的是用列表法或画树状图法求概率 注意列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,列表法适合于两步完
25、成的事件,树状图法适合两步或两步以上完成的事件注意概率=所求情况数与总情况数之比20(8.00 分)已知二次函数 y=x2+bx+c 的图象经过 A(0,3),B(4,)两点(1)求 b,c 的值(2)二次函数 y=x2+bx+c 的图象与 x 轴是否有公共点,求公共点的坐标;若没有,请说明情况【分析】(1)把点 A、B 的坐标分别代入函数解析式求得 b、c 的值;(2)利用根的判别式进行判断该函数图象是否与 x 轴有交点,由题意得到方程x2+x+3=0,通过解该方程求得 x 的值即为抛物线与 x 轴交点横坐标【解答】解:(1)把 A(0,3),B(4,)分别代入 y=x2+bx+c,得,解得
26、;(2)由(1)可得,该抛物线解析式为:y=x2+x+3=()24()3=0,所以二次函数 y=x2+bx+c 的图象与 x 轴有公共点x2+x+3=0 的解为:x1=2,x2=8公共点的坐标是(2,0)或(8,0)【点评】考查了抛物线与 x 轴的交点,二次函数图象上点的坐标特征注意抛物线解析式与一元二次方程间的转化关系21(8.00 分)某驻村扶贫小组为解决当地贫困问题,带领大家致富经过调查研究,他们决定利用当地生产的甲乙两种原料开发 A,B 两种商品,为科学决策,他们试生产 A、B 两种商品 100 千克进行深入研究,已知现有甲种原料 293 千克,乙种原料 314 千克,生产 1 千克A
27、 商品,1 千克 B 商品所需要的甲、乙两种原料及生产成本如下表所示甲种原料(单位:千克)乙种原料(单位:千克)生产成本(单位:元)A 商品32120B 商品2.53.5200设生产 A 种商品 x 千克,生产 A、B 两种商品共 100 千克的总成本为 y 元,根据上述信息,解答下列问题:(1)求 y 与 x 的函数解析式(也称关系式),并直接写出 x 的取值范围;(2)x 取何值时,总成本 y 最小?【分析】(1)根据题意表示出两种商品需要的成本,再利用表格中数据得出不等式组进而得出答案;(2)利用一次函数增减性进而得出答案【解答】解:(1)由题意可得:y=120 x+200(100 x)
28、=80 x+20000,解得:72x86;(2)y=80 x+20000,y 随 x 的增大而减小,x=86 时,y 最小,则 y=8086+20000=13120(元)【点评】此题主要考查了一次函数的应用以及不等式的应用,正确利用表格获得正确信息是解题关键22(9.00 分)如图,已知 AB 是O 上的点,C 是O 上的点,点 D 在 AB 的延长线上,BCD=BAC(1)求证:CD 是O 的切线;(2)若D=30,BD=2,求图中阴影部分的面积【分析】(1)连接 OC,易证BCD=OCA,由于 AB 是直径,所以ACB=90,所以OCA+OCB=BCD+OCB=90,CD 是O 的切线(2
29、)设O 的半径为 r,AB=2r,由于D=30,OCD=90,所以可求出 r=2,AOC=120,BC=2,由勾股定理可知:AC=2,分别计算OAC 的面积以及扇形 OAC 的面积即可求出影响部分面积【解答】解:(1)连接 OC,OA=OC,BAC=OCA,BCD=BAC,BCD=OCA,AB 是直径,ACB=90,OCA+OCB=BCD+OCB=90OCD=90OC 是半径,CD 是O 的切线(2)设O 的半径为 r,AB=2r,D=30,OCD=90,OD=2r,COB=60r+2=2r,r=2,AOC=120BC=2,由勾股定理可知:AC=2易求 SAOC=21=S扇形 OAC=阴影部分
30、面积为【点评】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含 30 度的直角三角形的性质,等边三角形的性质等知识,需要学生灵活运用所学知识23(12.00分)如图,在平行四边形ABCD中,点E是 CD的中点,点F是BC边上的点,AF=AD+FC,平行四边形 ABCD 的面积为 S,由 A、E、F 三点确定的圆的周长为 t(1)若ABE 的面积为 30,直接写出 S 的值;(2)求证:AE 平分DAF;(3)若 AE=BE,AB=4,AD=5,求 t 的值【分析】(1)作 EGAB 于点 G,由 SABE=ABEG=30 得 ABEG=60,即可得出答案;(2)延长 AE 交 BC 延长线
31、于点 H,先证ADEHCE 得 AD=HC、AE=HE 及 AD+FC=HC+FC,结合 AF=AD+FC 得FAE=CHE,根据DAE=CHE 即可得证;(3)先证ABF=90得出 AF2=AB2+BF2=16+(5FC)2=(FC+CH)2=(FC+5)2,据此求得 FC的长,从而得出 AF 的长度,再由 AE=HE、AF=FH 知 FEAH,即 AF 是AEF 的外接圆直径,从而得出答案【解答】解:(1)如图,作 EGAB 于点 G,则 SABE=ABEG=30,则 ABEG=60,平行四边形 ABCD 的面积为 60;(2)延长 AE 交 BC 延长线于点 H,四边形 ABCD 是平行
32、四边形,ADBC,ADE=HCE,DAE=CHE,E 为 CD 的中点,CE=ED,ADEHCE,AD=HC、AE=HE,AD+FC=HC+FC,由 AF=AD+FC 和 FH=HC+FC 得 AF=FH,FAE=CHE,又DAE=CHE,DAE=FAE,AE 平分DAF;(3)连接 EF,AE=BE、AE=HE,AE=BE=HE,BAE=ABE,HBE=BHE,DAE=CHE,BAE+DAE=ABE+HBE,即DAB=CBA,由四边形 ABCD 是平行四边形得DAB+CBA=180,CBA=90,AF2=AB2+BF2=16+(5FC)2=(FC+CH)2=(FC+5)2,解得:FC=,AF=FC+CH=,AE=HE、AF=FH,FEAH,AF 是AEF 的外接圆直径,AEF 的外接圆的周长 t=【点评】本题主要考查圆的综合问题,解题的关键是掌握平行四边形的性质、矩形的判定与性质、全等三角形的判定与性质及等腰三角形的性质、勾股定理等知识点