《经典高考立体几何知识点和例题(理科学生用)_中学教育-高考.pdf》由会员分享,可在线阅读,更多相关《经典高考立体几何知识点和例题(理科学生用)_中学教育-高考.pdf(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、学习必备 精品知识点 高考立体几何知识点总结 整体知识框架:一、空间几何体(一)空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。(二)几种空间几何体的结构特征 1、棱柱的结构特征 1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。1.2 棱柱的分类 棱柱四棱柱平行六面体直平行六面体长方体正四棱柱
2、正方体 性质:棱长都相等 底面是正方形 底面是矩形 侧棱垂直于底面 底面是平行四边形 底面是四边形 图 1-1 棱柱 学习必备 精品知识点、侧面都是平行四边形,且各侧棱互相平行且相等;、两底面是全等多边形且互相平行;、平行于底面的截面和底面全等;1.3 棱柱的面积和体积公式 chS直棱柱侧(c是底周长,h是高)S直棱柱表面=ch+2S底 V棱柱=S底 h 2、棱锥的结构特征 2.1 棱锥的定义 (1)棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。2.
3、2 正棱锥的结构特征 、平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;、正棱锥的各侧棱相等,各侧面是全等的等腰三角形;正棱锥侧面积:12Sch正棱椎(c为底周长,h为斜高)体积:13VSh棱椎(S为底面积,h为高)正四面体:对于棱长为a正四面体的问题可将它补成一个边长为a22的正方体问题。对棱间的距离为a22(正方体的边长)正四面体的高a36(正方体体对角线l32)正四面体的体积为3122a(正方体小三棱锥正方体VVV314)
4、正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:ll2161)A B C D P O H 面多边形围成的几何体围成多面体的各个多边形叫做多面体的面相邻两个面的公共边叫做多面体的棱棱与棱的公共点叫做多面体的顶点旋转体把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体其中这条直线称为每相邻两个四边形的公共边都互相平行由这些面所围成的几何体叫做棱柱棱柱的分类图棱柱棱柱底面是四边形四棱柱底面是平行四边形侧棱垂直于底面平行六面体直平行六面底面是矩形体性质长方体底面是正方形正四棱柱棱长都相于底面的截面和底面全等棱柱的面积和体积公式直棱柱侧是底周长是高直棱柱表面底底棱
5、柱棱锥的结构特征棱锥的定义棱锥有一个面是多边形其余各面是有一个公共顶点的三角形由这些面所围成的几何体叫做棱锥正棱锥如果有一个学习必备 精品知识点 正四面体的外接球半径为a46,外接球半径为a126,外接球半径a42 3、棱台的结构特征 3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台。3.2 正棱台的结构特征 (1)各侧棱相等,各侧面都是全等的等腰梯形;(2)正棱台的两个底面和平行于底面的截面都是正多边形;(3)正棱台的对角面也是等腰梯形;(4)各侧棱的延长线交于一点。4、圆柱的结构特征 4.1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形
6、成的曲面所围成的几何体叫圆柱。4.2 圆柱的性质(1)上、下底及平行于底面的截面都是等圆;(2)过轴的截面(轴截面)是全等的矩形。4.3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形。4.4 圆柱的面积和体积公式 S圆柱侧面=2 rh (r 为底面半径,h 为圆柱的高)面多边形围成的几何体围成多面体的各个多边形叫做多面体的面相邻两个面的公共边叫做多面体的棱棱与棱的公共点叫做多面体的顶点旋转体把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体其中这条直线称为每相邻两个四边形的公共边都互相平行由这些面所围成的几何体叫做棱柱棱柱的分类图棱柱棱柱底面是四边形四棱柱底面
7、是平行四边形侧棱垂直于底面平行六面体直平行六面底面是矩形体性质长方体底面是正方形正四棱柱棱长都相于底面的截面和底面全等棱柱的面积和体积公式直棱柱侧是底周长是高直棱柱表面底底棱柱棱锥的结构特征棱锥的定义棱锥有一个面是多边形其余各面是有一个公共顶点的三角形由这些面所围成的几何体叫做棱锥正棱锥如果有一个学习必备 精品知识点 S圆柱全=2 r h+2 r2 V圆柱=S底h=r2h 5、圆锥的结构特征 5.1 圆锥的定义:以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥。5.2 圆锥的结构特征 (1)平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距
8、离与顶点到底面的距离之比;(2)轴截面是等腰三角形;(3)母线的平方等于底面半径与高的平方和:l2=r2+h2 5.3 圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形。6、圆台的结构特征 6.1 圆台的定义:用一个平行于底面的平面去截圆锥,我们把截面和底面之间的部分称为圆台。6.2 圆台的结构特征 圆台的上下底面和平行于底面的截面都是圆;圆台的截面是等腰梯形;圆台经常补成圆锥,然后利用相似三角形进行研究。6.3 圆台的面积和体积公式 S圆台侧=(R+r)l (r、R 为上下底面半径)S圆台全=r2+R2+(R+r)l V圆台=1/3(r2+R2+r R)h (h 为圆台
9、的高)7 球的结构特征 7.1 球的定义:以半圆的直径所在的直线为旋转轴,半圆旋转一周形成的旋转体叫做球体。空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体称为球体。7-2 球的结构特征 球心与截面圆心的连线垂直于截面;截面半径等于球半径与截面和球心的距离的平方差:r2=R2 d2 7-3 球与其他多面体的组合体的问题 球体与其他多面体组合,包括内接和外切两种类型,解决此类问题的基本思路是:根据题意,确定是内接还是外切,画出立体图形;找出多面体与球体连接的地方,找出对球的合适的切割面,然后做出剖面图;图 1-5 圆锥 面多边形围成的几何体围成多面体的各个多边形叫做多面体的面相邻
10、两个面的公共边叫做多面体的棱棱与棱的公共点叫做多面体的顶点旋转体把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体其中这条直线称为每相邻两个四边形的公共边都互相平行由这些面所围成的几何体叫做棱柱棱柱的分类图棱柱棱柱底面是四边形四棱柱底面是平行四边形侧棱垂直于底面平行六面体直平行六面底面是矩形体性质长方体底面是正方形正四棱柱棱长都相于底面的截面和底面全等棱柱的面积和体积公式直棱柱侧是底周长是高直棱柱表面底底棱柱棱锥的结构特征棱锥的定义棱锥有一个面是多边形其余各面是有一个公共顶点的三角形由这些面所围成的几何体叫做棱锥正棱锥如果有一个学习必备 精品知识点 将立体问题转化为平面几何中圆与多
11、边形的问题;注意圆与正方体的两个关系:球内接正方体,球直径等于正方体对角线;球外切正方体,球直径等于正方体的边长。7-4 球的面积和体积公式 S球面=4 R2 (R 为球半径)V球=4/3 R3 练习:1)将直角三角形绕它的一边旋转一周,形成的几何体一定是()A圆锥 B圆柱 C圆台 D上均不正确 2)用一个平面去截一个几何体,得到的截面是四边形,这个几何体可能是()A圆锥 B圆柱 C 球体 D 以上都可能 3)下左一图是一个物体的三视图,根据图中尺寸(单位:cm),计算它的体积为 cm3.二、典型例题分析 例 1:(几何体的侧面展开图)如上左二图,长方体1111DCBAABCD 的长、宽、高分
12、别是 5cm、4cm、3cm,一只蚂蚁从A到1C点,沿着表面爬行的最短距离是多少 练习:1)如上右二图,四面体 P-ABC 中,PA=PB=PC=2,APB=BPC=APC=300.一只蚂蚁 从 A点出发沿四面体的表面绕一周,再回到 A点,问蚂蚁经过的最短路程是_ 练习.1)已知一个几何体的主视图及左视图均是边长为2的正三角形,俯视图是直径为2的圆,则此几何体的外接球的表面积为()A34 B38 C316 D332 (三)空间几何体的表面积与体积 空间几何体的表面积 棱柱、棱锥的表面积:各个面面积之和 圆柱的表面积:222Srlr 圆锥的表面积:2Srlr 圆台的表面积:22SrlrRlR 球
13、的表面积:24SR ACDBCDOABOCAAc面多边形围成的几何体围成多面体的各个多边形叫做多面体的面相邻两个面的公共边叫做多面体的棱棱与棱的公共点叫做多面体的顶点旋转体把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体其中这条直线称为每相邻两个四边形的公共边都互相平行由这些面所围成的几何体叫做棱柱棱柱的分类图棱柱棱柱底面是四边形四棱柱底面是平行四边形侧棱垂直于底面平行六面体直平行六面底面是矩形体性质长方体底面是正方形正四棱柱棱长都相于底面的截面和底面全等棱柱的面积和体积公式直棱柱侧是底周长是高直棱柱表面底底棱柱棱锥的结构特征棱锥的定义棱锥有一个面是多边形其余各面是有一个公共顶点
14、的三角形由这些面所围成的几何体叫做棱锥正棱锥如果有一个学习必备 精品知识点 扇形的面积公式2211=36022n RSlrr扇形(其中l表示弧长,r表示半径,表示弧度)空间几何体的体积 柱体的体积:VSh底 锥体的体积:13VSh底 台体的体积:1)3VSSSSh下下上上(球体的体积:343VR (四)空间几何体的三视图和直观图 正视图:光线从几何体的前面向后面正投影,得到的投影图。侧视图:光线从几何体的左边向右边正投影,得到的投影图。俯视图:光线从几何体的上面向右边正投影,得到的投影图。画三视图的原则:主视图反映了物体的上、下和左、右位置关系;俯视图反映了物体的前、后和左、右位置关系;侧视图
15、反映了物体的上、下和前、后位置关系。三个视图之间的投影关系为:正俯长相等、正侧高相同、俯侧宽一样 注:球的三视图都是圆;长方体的三视图都是矩形 直观图:斜二测画法 斜二测画水平放置的平面图形的基本步骤(1)建立直角坐标系,在已知水平放置的平面图形中取互相垂直的 Ox,Oy,建立直角坐标系;(2)画出斜坐标系,在画直观图的纸上(平面上)画出对应的 Ox,Oy,使x Oy 45(或 135),它们确定的平面表示水平平面;(3)画对应图形,在已知图形中平行于 x 轴的线段,在直观图中画成平行于 x 轴,且长度保持不变;平行于 y 轴的线段,在直观图中画成平行于 y 轴,且长度变为原来的一半;(4)擦
16、去辅助线,图画好后,要擦去 x 轴、y 轴及为画图添加的辅助线(虚线)原视图与直观图的关系:直观图原视图原视图直观图,ssss2242 例 1、将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为 ()解析:如图所示,点 D1的投影为点 C1,点 D 的投影为点 C,点 A的投影为点 B.面多边形围成的几何体围成多面体的各个多边形叫做多面体的面相邻两个面的公共边叫做多面体的棱棱与棱的公共点叫做多面体的顶点旋转体把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体其中这条直线称为每相邻两个四边形的公共边都互相平行由这些面所围成的几何体叫做棱柱棱柱的分类图棱柱棱柱底面是四边
17、形四棱柱底面是平行四边形侧棱垂直于底面平行六面体直平行六面底面是矩形体性质长方体底面是正方形正四棱柱棱长都相于底面的截面和底面全等棱柱的面积和体积公式直棱柱侧是底周长是高直棱柱表面底底棱柱棱锥的结构特征棱锥的定义棱锥有一个面是多边形其余各面是有一个公共顶点的三角形由这些面所围成的几何体叫做棱锥正棱锥如果有一个学习必备 精品知识点 答案:D 练习:(1)如图所示为某一平面图形的直观图,则此平面图形可能是 ()(2)判断:水平放置的正方形的直观图可能是等腰梯形 两条相交的线段的直观图可能是平行线段 两条互相垂直的直线的直观图仍然垂直 平行四边形的直观图仍为平行四边形 长度相等的两线段直观图仍然相等
18、(3)三角形ABC是边长为1正三角形,求其直观图三角形CBA的面积(4)如图,正方形CBAO的边长为1,它是水平放置的一个平面图形的直观图,求原图形的周长和面积 (5)如上右图,用斜二测画法作ABC水平放置的直观图形得A1B1C1,其中 A1B1=B1C1,A1D1是 B1C1边上的中线,由图形可知在ABC中,下列四个结论中正确的是()AAB=BC=AC B ADBC C ACADABBC D ACADAB=BC 空间几何体三视图(重点)例 1 如图所示,某几何体的正视图是平行四边形,侧视图和俯视图都是矩形,则该几何体的体积为 ()面多边形围成的几何体围成多面体的各个多边形叫做多面体的面相邻两
19、个面的公共边叫做多面体的棱棱与棱的公共点叫做多面体的顶点旋转体把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体其中这条直线称为每相邻两个四边形的公共边都互相平行由这些面所围成的几何体叫做棱柱棱柱的分类图棱柱棱柱底面是四边形四棱柱底面是平行四边形侧棱垂直于底面平行六面体直平行六面底面是矩形体性质长方体底面是正方形正四棱柱棱长都相于底面的截面和底面全等棱柱的面积和体积公式直棱柱侧是底周长是高直棱柱表面底底棱柱棱锥的结构特征棱锥的定义棱锥有一个面是多边形其余各面是有一个公共顶点的三角形由这些面所围成的几何体叫做棱锥正棱锥如果有一个学习必备 精品知识点 A6 3 B9 3 C12 3 D
20、18 3 解析:由三视图可还原几何体的直观图如图所示 此几何体可通过分割和补形的方法拼凑成一个长和宽均为 3,高为 3的长方体,所求体积 V3 3 39 3.答案:B(2)一个空间几何体的三视图如图所示,则该几何体的表面积为()A48 B328 17 C488 17 D80(3)某几何体的三视图如图所示,则该几何体的体积为()面多边形围成的几何体围成多面体的各个多边形叫做多面体的面相邻两个面的公共边叫做多面体的棱棱与棱的公共点叫做多面体的顶点旋转体把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体其中这条直线称为每相邻两个四边形的公共边都互相平行由这些面所围成的几何体叫做棱柱棱柱的
21、分类图棱柱棱柱底面是四边形四棱柱底面是平行四边形侧棱垂直于底面平行六面体直平行六面底面是矩形体性质长方体底面是正方形正四棱柱棱长都相于底面的截面和底面全等棱柱的面积和体积公式直棱柱侧是底周长是高直棱柱表面底底棱柱棱锥的结构特征棱锥的定义棱锥有一个面是多边形其余各面是有一个公共顶点的三角形由这些面所围成的几何体叫做棱锥正棱锥如果有一个学习必备 精品知识点 A92 12 B92 18 C9 42 D36 18【答案】(1)C(2)B 【解析】(1)由三视图可知本题所给的是一个底面为等腰梯形的放倒的直四棱柱(如图所示),所以该直四棱柱的表面积为 S212(24)44 42 42 116 4488 1
22、7.(2)由三视图可得这个几何体是由上面是一个直径为 3 的球,下面是一个长、宽都为 3、高为 2 的长方体所构成的几何体,则其体积为:VV1V2433233 3 292 18,故选 B.(3).【2012 高考真题北京理 7】某三棱锥的三视图如图所示,该三梭锥的表面积是()A.28+65 B.30+65 C.56+125 D.60+125 【答案】B【解析】从所给的三视图可以得到该几何体为三棱锥,如图所示,图中蓝色数字所表示的为直接从题目所给三视图中读出的长度,黑色数字代表通过勾股定理的计算得到的边长。本题所求表面积应为三棱锥四个面的面积之和,利用垂直关系和三角形面积公式,可得:10底S,1
23、0后S,10右S,56左S,因此该几何体表面积面多边形围成的几何体围成多面体的各个多边形叫做多面体的面相邻两个面的公共边叫做多面体的棱棱与棱的公共点叫做多面体的顶点旋转体把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体其中这条直线称为每相邻两个四边形的公共边都互相平行由这些面所围成的几何体叫做棱柱棱柱的分类图棱柱棱柱底面是四边形四棱柱底面是平行四边形侧棱垂直于底面平行六面体直平行六面底面是矩形体性质长方体底面是正方形正四棱柱棱长都相于底面的截面和底面全等棱柱的面积和体积公式直棱柱侧是底周长是高直棱柱表面底底棱柱棱锥的结构特征棱锥的定义棱锥有一个面是多边形其余各面是有一个公共顶点的
24、三角形由这些面所围成的几何体叫做棱锥正棱锥如果有一个学习必备 精品知识点 5630左右后底SSSSS,故选 B。例题:1.一空间几何体的三视图如下右图所示,则该几何体的体积为().A.22 3 B.42 3 C.2 323 D.2 343 2、上中图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 A.9 B.10 C.11 D12 3、若一个正三棱柱的体积为312,其三视图如上左图所示,则这个正三棱柱的侧视图的面积为_。4.【2012 高考真题广东理 6】某几何体的三视图如图所示,它的体积为(C)A12 B.45 C.57 D.81 面多边形围成的几何体围成多面体的各个多边形叫做多
25、面体的面相邻两个面的公共边叫做多面体的棱棱与棱的公共点叫做多面体的顶点旋转体把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体其中这条直线称为每相邻两个四边形的公共边都互相平行由这些面所围成的几何体叫做棱柱棱柱的分类图棱柱棱柱底面是四边形四棱柱底面是平行四边形侧棱垂直于底面平行六面体直平行六面底面是矩形体性质长方体底面是正方形正四棱柱棱长都相于底面的截面和底面全等棱柱的面积和体积公式直棱柱侧是底周长是高直棱柱表面底底棱柱棱锥的结构特征棱锥的定义棱锥有一个面是多边形其余各面是有一个公共顶点的三角形由这些面所围成的几何体叫做棱锥正棱锥如果有一个学习必备 精品知识点 俯视图 二、典型例题
26、 考点一:三视图 1一空间几何体的三视图如图 1 所示,则该几何体的体积为_.第 1 题 2.若某空间几何体的三视图如图 2 所示,则该几何体的体积是_.第 2 题 第 3 题 3一个几何体的三视图如图 3 所示,则这个几何体的体积为 .4若某几何体的三视图(单位:cm)如图 4 所示,则此几何体的体积是 .第 4 题 第 5 题 5如图 5 是一个几何体的三视图,若它的体积是3 3,则a .2 2 侧(左)视图 2 2 2 正(主)视图 3 正视图 俯视图 1 1 2 左视图 a 面多边形围成的几何体围成多面体的各个多边形叫做多面体的面相邻两个面的公共边叫做多面体的棱棱与棱的公共点叫做多面体
27、的顶点旋转体把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体其中这条直线称为每相邻两个四边形的公共边都互相平行由这些面所围成的几何体叫做棱柱棱柱的分类图棱柱棱柱底面是四边形四棱柱底面是平行四边形侧棱垂直于底面平行六面体直平行六面底面是矩形体性质长方体底面是正方形正四棱柱棱长都相于底面的截面和底面全等棱柱的面积和体积公式直棱柱侧是底周长是高直棱柱表面底底棱柱棱锥的结构特征棱锥的定义棱锥有一个面是多边形其余各面是有一个公共顶点的三角形由这些面所围成的几何体叫做棱锥正棱锥如果有一个学习必备 精品知识点 6已知某个几何体的三视图如图 6,根据图中标出的尺寸(单位:cm),可得这个几何体的
28、体积是 .第 6 题 第 7 题 7.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是 3cm 8.设某几何体的三视图如图 8(尺寸的长度单位为 m),则该几何体的体积为_m3。第7题 第 8 题 9一个空间几何体的主视图和左视图都是边长为 1 的正方形,俯视图是一个圆,那么这个几何体的侧面积为_.10.一个三棱柱的底面是正三角形,侧棱垂直于底面,它的三视图及其尺寸如图 10 所示(单位 cm),则该三棱柱的表面积为_.2020正视图 20侧视图 10 10 20俯视图 223221 俯视图 正(主)视图 侧(左)视图 2 3 2 2 面多边形围成的几何体围成多面体的各个多边形叫做
29、多面体的面相邻两个面的公共边叫做多面体的棱棱与棱的公共点叫做多面体的顶点旋转体把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体其中这条直线称为每相邻两个四边形的公共边都互相平行由这些面所围成的几何体叫做棱柱棱柱的分类图棱柱棱柱底面是四边形四棱柱底面是平行四边形侧棱垂直于底面平行六面体直平行六面底面是矩形体性质长方体底面是正方形正四棱柱棱长都相于底面的截面和底面全等棱柱的面积和体积公式直棱柱侧是底周长是高直棱柱表面底底棱柱棱锥的结构特征棱锥的定义棱锥有一个面是多边形其余各面是有一个公共顶点的三角形由这些面所围成的几何体叫做棱锥正棱锥如果有一个学习必备 精品知识点 图 10 11.如
30、图 11 所示,一个空间几何体的主视图和左视图都是边长为 1 的正方形,俯视图是一个直径为 1 的圆,那么这个几何体的全面积为_.图 图11 图12 图 13 12.如图 12,一个空间几何体的主视图和左视图都是边长为 1 的正三角形,俯视图是一个圆,那么几何体的侧面积为_.13.已知某几何体的俯视图是如图 13 所示的边长为2的正方形,主视图与左视图是边长为2的正三角形,则其表面积是_.14.如果一个几何体的三视图如图 14 所示(单位长度:cm),则此几何体的表面积是_.图 14 15一个棱锥的三视图如图图 9-3-7,则该棱锥的全面积(单位:2cm)_.正视图 左视图 俯视图 图 1 正
31、视图 俯视图 面多边形围成的几何体围成多面体的各个多边形叫做多面体的面相邻两个面的公共边叫做多面体的棱棱与棱的公共点叫做多面体的顶点旋转体把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体其中这条直线称为每相邻两个四边形的公共边都互相平行由这些面所围成的几何体叫做棱柱棱柱的分类图棱柱棱柱底面是四边形四棱柱底面是平行四边形侧棱垂直于底面平行六面体直平行六面底面是矩形体性质长方体底面是正方形正四棱柱棱长都相于底面的截面和底面全等棱柱的面积和体积公式直棱柱侧是底周长是高直棱柱表面底底棱柱棱锥的结构特征棱锥的定义棱锥有一个面是多边形其余各面是有一个公共顶点的三角形由这些面所围成的几何体叫做
32、棱锥正棱锥如果有一个学习必备 精品知识点 二、点、直线、平面之间的关系(一)、立体几何网络图:1.平面的基本性质 公理 1 若一条直线上的两点在一个平面内,则这条直线上所有的点都在这个平面内.公理 2 如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.公理 3 经过不在同一直线上的三个点,有且只有一个平面.根据上面的公理,可得以下推论.推论 1 经过一条直线和这条直线外一点,有且只有一个平面.推论 2 经过两条相交直线,有且只有一个平面.推论 3 经过两条平行直线,有且只有一个平面.2.等角定理及其推论 定理 若一个角的两边和另一个角的两边分别平行,并且方向相同,则这两个角相
33、等.推论 若两条相交直线和另两条相交直线分别平行,则这两组直线所成的角相等.2.空间线面的位置关系 共面 平行没有公共点(1)直线与直线 相交有且只有一个公共点 异面(既不平行,又不相交)直线在平面内有无数个公共点(2)直线和平面 直线不在平面内 平行没有公共点 (直线在平面外)相交有且只有一公共点(3)平面与平面 相交有一条公共直线(无数个公共点)平行没有公共点 唯一性定理:(1)过已知点,有且只能作一直线和已知平面垂直。(2)过已知平面外一点,有且只能作一平面和已知平面平行。(3)过两条异面直线中的一条能且只能作一平面与另一条平行。1、线线平行的判断方法:1.中位线、证明平行四边形、相似边
34、互相平行(初中的方法)、内错角同位角相等、平行公理等 公理 4 线线平行 线面平行 面面平行 线线垂直 线面垂直 面面垂直 三垂线逆定理 三垂线定理 面多边形围成的几何体围成多面体的各个多边形叫做多面体的面相邻两个面的公共边叫做多面体的棱棱与棱的公共点叫做多面体的顶点旋转体把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体其中这条直线称为每相邻两个四边形的公共边都互相平行由这些面所围成的几何体叫做棱柱棱柱的分类图棱柱棱柱底面是四边形四棱柱底面是平行四边形侧棱垂直于底面平行六面体直平行六面底面是矩形体性质长方体底面是正方形正四棱柱棱长都相于底面的截面和底面全等棱柱的面积和体积公式直棱
35、柱侧是底周长是高直棱柱表面底底棱柱棱锥的结构特征棱锥的定义棱锥有一个面是多边形其余各面是有一个公共顶点的三角形由这些面所围成的几何体叫做棱锥正棱锥如果有一个学习必备 精品知识点 2.线面平行的性质、面面平行的性质 3.线面垂直的性质:垂直于同一平面的两直线平行。4.向量法,证明ba/2、线线垂直的判断:1.勾股定理 2.正方形、菱形、圆等特点 3.等腰、等边三角形的中线 4.线面垂直和面面垂直的转化 补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。3、线面平行的判断:如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。符号表示:4.线面平行的性质:如果一
36、条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。5、面面平行的判断:一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行。注:垂直于同一条直线的两个平面平行 5、面面平行的性质:性质定理:1.如果两个平行平面同时和第三个平面相交,那么它们的交线平行。2.两个平面平行,其中一个平面内的直线必平行于另一个平面。判断或证明线面平行的方法 利用定义(反证法):l I,则l (用于判断);利用判定定理:线线平行线面平行(用于证明);利用平面的平行:面面平行线面平行(用于证明);利用垂直于同一条直线的直线和平面平行(用于判断)。2 线面斜交和线面角:l =A 2.1
37、 直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角 。2.2 线面角的范围:0,90 注意:当直线在平面内或者直线平行于平面时,=0;当直线垂直于平面时,=90 图 2-3 线面角 面多边形围成的几何体围成多面体的各个多边形叫做多面体的面相邻两个面的公共边叫做多面体的棱棱与棱的公共点叫做多面体的顶点旋转体把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体其中这条直线称为每相邻两个四边形的公共边都互相平行由这些面所围成的几何体叫做棱柱棱柱的分类图棱柱棱柱底面是四边形四棱柱底面是平行四边形侧棱垂直于底面平行六面体直平行六面底面是矩形体性质长方体
38、底面是正方形正四棱柱棱长都相于底面的截面和底面全等棱柱的面积和体积公式直棱柱侧是底周长是高直棱柱表面底底棱柱棱锥的结构特征棱锥的定义棱锥有一个面是多边形其余各面是有一个公共顶点的三角形由这些面所围成的几何体叫做棱锥正棱锥如果有一个学习必备 精品知识点 4、线面垂直的判断:判定定理如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。5.线面垂直性质:(1)若直线垂直于平面,则它垂直于平面内任意一条直线。即:(2)垂直于同一平面的两直线平行。推论:bbaa/,即:6、面面垂直的判断:一个平面经过另一个平面的垂线,这两个平面互相垂直。判定定理:6、面面垂直的性质:如果两个平面垂直,那么在个
39、平面内垂 直于 交线 的直线必垂直于另个平面。定义法:若两面垂直,则这两个平面的二面角的平面角为 90;判断或证明线面垂直的方法 利用定义,用反证法证明。利用判定定理证明。一条直线垂直于平面而平行于另一条直线,则另一条直线也垂直与平面。一条直线垂直于两平行平面中的一个,则也垂直于另一个。如果两平面垂直,在一平面内有一直线垂直于两平面交线,则该直线垂直于另一平面。1.5 三垂线定理及其逆定理 斜线定理:从平面外一点向这个平面所引的所有线段中,斜线相等则射影相等,斜线越长则射影越长,垂线段最短。如图:图 2-7 斜线定理 图 2-10 面面垂直性质 2 面多边形围成的几何体围成多面体的各个多边形叫
40、做多面体的面相邻两个面的公共边叫做多面体的棱棱与棱的公共点叫做多面体的顶点旋转体把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体其中这条直线称为每相邻两个四边形的公共边都互相平行由这些面所围成的几何体叫做棱柱棱柱的分类图棱柱棱柱底面是四边形四棱柱底面是平行四边形侧棱垂直于底面平行六面体直平行六面底面是矩形体性质长方体底面是正方形正四棱柱棱长都相于底面的截面和底面全等棱柱的面积和体积公式直棱柱侧是底周长是高直棱柱表面底底棱柱棱锥的结构特征棱锥的定义棱锥有一个面是多边形其余各面是有一个公共顶点的三角形由这些面所围成的几何体叫做棱锥正棱锥如果有一个学习必备 精品知识点 三垂线定理及其逆
41、定理 已知 PO,斜线 PA 在平面 内的射影为 OA,a 是平面 内的一条直线。三垂线定理:若 aOA,则 aPA。即垂直射影则垂直斜线。三垂线定理逆定理:若 aPA,则 aOA。即垂直斜线则垂直射影。三垂线定理及其逆定理的主要应用 证明异面直线垂直;作出和证明二面角的平面角;作点到线的垂线段。(二)、其他定理:(1)确定平面的条件:不共线的三点;直线和直线外一点;相交直线或平行直线;(5)最小角定理:斜线与平面内所有直线所成的角中最小的是与它在平面内射影所成的角。(6)异面直线的判定:反证法;过平面外一点与平面内一点的直线,和平面内不过该点的直线是异面直线。(7)过已知点与一条直线垂直的直
42、线都在过这点与这条直线垂直平面内。(8)如果直线平行于两个相交平面,那么这条直线平行于两个平面的交线。考点六 线面、面面关系判断题 1已知直线l、m、平面、,且l,m,给出下列四个命题:(1),则l m (2)若l m,则(3)若,则l m (4)若l m,则 其中正确的是_.2.m、n是空间两条不同直线,、是空间两条不同平面,下面有四个命题:,;mnmn,;mnmn ,;mnmn ,;mmnn 其中真命题的编号是_(写出所有真命题的编号)。5.关于直线m、n与平面与,有下列四个命题:若/,/mn且/,则/mn;若,mn且,则mn;若,/mn且/,则mn;若/,mn且,则/mn;其中真命题的序
43、号是_.图 2-8 三垂线定理 面多边形围成的几何体围成多面体的各个多边形叫做多面体的面相邻两个面的公共边叫做多面体的棱棱与棱的公共点叫做多面体的顶点旋转体把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体其中这条直线称为每相邻两个四边形的公共边都互相平行由这些面所围成的几何体叫做棱柱棱柱的分类图棱柱棱柱底面是四边形四棱柱底面是平行四边形侧棱垂直于底面平行六面体直平行六面底面是矩形体性质长方体底面是正方形正四棱柱棱长都相于底面的截面和底面全等棱柱的面积和体积公式直棱柱侧是底周长是高直棱柱表面底底棱柱棱锥的结构特征棱锥的定义棱锥有一个面是多边形其余各面是有一个公共顶点的三角形由这些面
44、所围成的几何体叫做棱锥正棱锥如果有一个学习必备 精品知识点 练习 1.判断下面命题的正确的是 平行于同一直线的两平面平行.垂直于同一平面的两直线平行.平行于同一平面的两直线平行.垂直于同一直线的两平面平行.平行于同一平面的两平面平行.垂直于同一平面的两平面平行.2 空间不重合的三平面可以把空间分成 部分,正方体六个面所在平面把空间分成 部分.3 若ba,是异面直线,b,c是异面直线,则 a,c的位置关系是()A.相交,平行或异面 B.相交或平行 C.异面 D.平行或异面 4 设 b,c 表示两条直线,表示两个平面,下列命题中正确的是 A若 b,c,则 bc B若 b,bc,则 c C若 c c
45、,则 D若 c 则 c 5 设,m n是两条不同的直线,是两个不同的平面,下列命题正确的是()A,若,/mn mn,则/B,若/,/,/,mn 则/mn C,若,/,/mn,则mn D,若/,/,/,mn mn则/6 设ba,是两条直线,是两个平面,则能推出ba 的一个条件是 ()A.,/,ba B./,ba 9 已知nm,为两条不同的直线,为两个不同的平面,则下列命题中正确的是()10 已知两条直线nm,两个平面,给出下面四个命题:/,mn mn /,/mnmn /,/mn mn /,/,mn mn 其中正确命题的序号是()A B C D 11 设有直线nm,和平面,.下列四个命题中,正确的
46、是()A.若 m,n,则 mn B.若 m,n,m,n,则 C.若,m,则 m D.若,m,m,则 m 12 设,是两个不同的平面,l是一条直线,以下命题正确的是()A若,l则l B若/,/l,则l C若/,l,则l D若,/l,则l 13 已知直线ba,和平面,下述推理中正确的有 .14 如下左图是正方体的平面展开图,在这个正方体中,BM 与 ED 平行;CN 与 BE 是异面直线;CN 与 BM 成60角;DM 与 BN 垂直;以上四个命题中,正确命题的序号是()练习:下左二图是一个正方体的展开图,在原正方体中,有下列命题:AB 与 EF 所在直线平行;AB与 CD 所在直线异面;MN 与
47、 BF 所在直线成 60;MN 与 CD 所在直线垂直;其中正确命题的序号是_.面多边形围成的几何体围成多面体的各个多边形叫做多面体的面相邻两个面的公共边叫做多面体的棱棱与棱的公共点叫做多面体的顶点旋转体把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体其中这条直线称为每相邻两个四边形的公共边都互相平行由这些面所围成的几何体叫做棱柱棱柱的分类图棱柱棱柱底面是四边形四棱柱底面是平行四边形侧棱垂直于底面平行六面体直平行六面底面是矩形体性质长方体底面是正方形正四棱柱棱长都相于底面的截面和底面全等棱柱的面积和体积公式直棱柱侧是底周长是高直棱柱表面底底棱柱棱锥的结构特征棱锥的定义棱锥有一个面
48、是多边形其余各面是有一个公共顶点的三角形由这些面所围成的几何体叫做棱锥正棱锥如果有一个学习必备 精品知识点 考点四 平行与垂直的证明 1.正方体1111ABCD-A B C D,1AA=2,E 为棱1CC的中点()求证:11B DAE;()求证:/AC平面1B DE;()求三棱锥A-BDE的体积 2.已知正方体1111ABCDABC D,O是底ABCD对角线的交点.求证:()C1O面11ABD;(2)1AC 面11ABD 3如图,PA 矩形ABCD所在平面,M、N分别是AB和PC的中点.()求证:MN平面PAD;()求证:MNCD;()若45PDA,求证:MN 平面PCD.NMPDCBAA1D
49、1C1B1AEDCBD1ODBAC1B1A1C面多边形围成的几何体围成多面体的各个多边形叫做多面体的面相邻两个面的公共边叫做多面体的棱棱与棱的公共点叫做多面体的顶点旋转体把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体其中这条直线称为每相邻两个四边形的公共边都互相平行由这些面所围成的几何体叫做棱柱棱柱的分类图棱柱棱柱底面是四边形四棱柱底面是平行四边形侧棱垂直于底面平行六面体直平行六面底面是矩形体性质长方体底面是正方形正四棱柱棱长都相于底面的截面和底面全等棱柱的面积和体积公式直棱柱侧是底周长是高直棱柱表面底底棱柱棱锥的结构特征棱锥的定义棱锥有一个面是多边形其余各面是有一个公共顶点的
50、三角形由这些面所围成的几何体叫做棱锥正棱锥如果有一个学习必备 精品知识点 4如图,在五面体 ABCDEF 中,FA 平面 ABCD,AD/BC/FE,ABAD,M 为 EC 的中点,N 为 AE 的中点,AF=AB=BC=FE=12AD(I)证明平面 AMD平面 CDE;(II)证明/BN平面 CDE;5在四棱锥 PABCD 中,侧面 PCD 是正三角形,且与底面 ABCD 垂直,已知菱形 ABCD 中ADC60,M 是 PA的中点,O 是 DC 中点.(1)求证:OM/平面 PCB;(2)求证:PACD;(3)求证:平面 PAB平面 COM.7如图,在四棱锥 PABCD 中,底面 ABCD