《2020年辽宁省盘锦市中考数学试卷.pdf》由会员分享,可在线阅读,更多相关《2020年辽宁省盘锦市中考数学试卷.pdf(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第 1页(共 28页)2020 年辽宁省盘锦市中考数学试卷年辽宁省盘锦市中考数学试卷一、单选题(下列各题的备选答案中只有一个是正确的,请将正确答案的序号涂在答题一、单选题(下列各题的备选答案中只有一个是正确的,请将正确答案的序号涂在答题卡上,每小题卡上,每小题 3 分,共分,共 30 分)分)1(3 分)在有理数 1,1,0 中,最小的数是()A1BC1D02(3 分)如图中的几何体是由六个完全相同的小正方体组成的,它的主视图是()ABCD3(3 分)下列运算正确的是()Aa3a3a9Ba6a3a2Ca3+a32a6D(a2)3a64(3 分)不等式 4x+1x+7 的解集在数轴上表示正确的是
2、()ABCD5(3 分)下列命题正确的是()A圆内接四边形的对角互补B平行四边形的对角线相等第 2页(共 28页)C菱形的四个角都相等D等边三角形是中心对称图形6(3 分)为了解某地区九年级男生的身高情况,随机抽取了该地区 1000 名九年级男生的身高数据,统计结果如下:身高 x/cmx160160 x170170 x180 x180人数60260550130根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于 170cm 的概率是()A0.32B0.55C0.68D0.877(3 分)在市运动会射击比赛选拔赛中,某校射击队甲、乙、丙、丁四名队员的 10 次射击成绩如图所示他们的
3、平均成绩均是 9.0 环,若选一名射击成绩稳定的队员参加比赛,最合适的人选是()第 3页(共 28页)A甲B乙C丙D丁8(3 分)我国古代数学著作九章算术记载了一道有趣的问题原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐问水深、葭长各几何译为:有一个水池,水面是一个边长为 10 尺的正方形,在水池正中央有一根芦苇,它高出水面 1 尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设芦苇的长度是 x 尺根据题意,可列方程为()Ax2+102(x+1)2B(x1)2+52x2Cx2+52(x+1)2D(x1)2+102x29(3
4、分)如图,在ABC 中,ABBC,ABC90,以 AB 为直径的O 交 AC 于点 D,点 E 为线段 OB 上的一点,OE:EB1:,连接 DE 并延长交 CB 的延长线于点 F,连接 OF 交O 于点 G,若 BF2,则的长是()第 4页(共 28页)ABCD10(3 分)如图,四边形 ABCD 是边长为 1 的正方形,点 E 是射线 AB 上的动点(点 E 不与点 A,点 B 重合),点 F 在线段 DA 的延长线上,且 AFAE,连接 ED,将 ED 绕点 E顺时针旋转 90得到 EG,连接 EF,FB,BG设 AEx,四边形 EFBG 的面积为 y,下列图象能正确反映出 y 与 x
5、的函数关系的是()ABC第 5页(共 28页)D二、填空题(每小题二、填空题(每小题 3 分,共分,共 18 分)分)11(3 分)2019 年中国国土绿化状况公报表明,全国保护修复湿地 93000 公顷,将数据93000 用科学记数法表示为12(3 分)若关于 x 的方程 x2+2x+m0 有两个不相等的实数根,则 m 的取值范围是13(3 分)如图,直线 ab,ABC 的顶点 A 和 C 分别落在直线 a 和 b 上,若160,ACB40,则2 的度数是14(3 分)如图,AOB 三个顶点的坐标分别为 A(5,0),O(0,0),B(3,6),以点 O为位似中心,相似比为,将AOB 缩小,
6、则点 B 的对应点 B的坐标是15(3 分)如图,菱形 ABCD 的边长为 4,A45,分别以点 A 和点 B 为圆心,大于AB的长为半径作弧,两弧相交于 M,N 两点,直线 MN 交 AD 于点 E,连接 CE,则 CE 的长为16(3 分)如图,在矩形 ABCD 中,AB1,BC2,点 E 和点 F 分别为 AD,CD 上的点,第 6页(共 28页)将DEF 沿 EF 翻折,使点 D 落在 BC 上的点 M 处,过点 E 作 EHAB 交 BC 于点 H,过点 F 作 FGBC 交 AB 于点 G若四边形 ABHE 与四边形 BCFG 的面积相等,则 CF的长为三、解答题(本大题三、解答题
7、(本大题 9 个小题,共个小题,共 102 分)分)17先化简,再求值:,其中 a+118有四张正面分别标有数字 1,2,3,4 的不透明卡片,它们除数字外无其他差别,现将它们背面朝上洗匀(1)随机抽取一张卡片,卡片上的数字是奇数的概率为(2)随机抽取一张卡片,然后放回洗匀,再随机抽取一张卡片,请用列表或画树状图的方法,求两次抽取的卡片上的数字和等于 6 的概率19某校为了解学生课外阅读时间情况,随机抽取了 m 名学生,根据平均每天课外阅读时间的长短,将他们分为 A,B,C,D 四个组别,并绘制了如图不完整的频数分布表和扇形统计图频数分布表组别时间/(小时)频数/人数A0t0.52nB0t12
8、0C1t1.5n+10Dt1.55请根据图表中的信息解答下列问题:(1)求 m 与 n 的值,并补全扇形统计图;(2)直接写出所抽取的 m 名学生平均每天课外阅读时间的中位数落在的组别;(3)该校现有 1500 名学生,请你估计该校有多少名学生平均每天课外阅读时间不少于 1第 7页(共 28页)小时20如图,A、B 两点的坐标分别为(2,0),(0,3),将线段 AB 绕点 B 逆时针旋转 90得到线段 BC,过点 C 作 CDOB,垂足为 D,反比例函数 y的图象经过点 C(1)直接写出点 C 的坐标,并求反比例函数的解析式;(2)点 P 在反比例函数 y的图象上,当PCD 的面积为 3 时
9、,求点 P 的坐标21如图,某数学活动小组要测量建筑物 AB 的高度,他们借助测角仪和皮尺进行了实地测量,测量结果如下表测量项目测量数据测角仪到地面的距离CD1.6m点 D 到建筑物的距离BD4m从 C 处观测建筑物顶部 A 的仰角ACE67从 C 处观测建筑物底部 B 的俯角BCE22请根据需要,从上面表格中选择 3 个测量数据,并利用你选择的数据计算出建筑物 AB的高度(结果精确到 0.1 米,参考数据:sin670.92,cos670.39,tan672.36sin220.37,cos220.93,tan220.40)(选择一种方法解答即可)第 8页(共 28页)22如图,BC 是O 的
10、直径,AD 是O 的弦,AD 交 BC 于点 E,连接 AB,CD,过点 E作 EFAB,垂足为 F,AEFD(1)求证:ADBC;(2)点 G 在 BC 的延长线上,连接 AG,DAG2D求证:AG 与O 相切;当,CE4 时,直接写出 CG 的长23某服装厂生产 A 品种服装,每件成本为 71 元,零售商到此服装厂一次性批发 A 品牌服装 x 件时,批发单价为 y 元,y 与 x 之间满足如图所示的函数关系,其中批发件数 x 为 10的正整数倍(1)当 100 x300 时,y 与 x 的函数关系式为(2)某零售商到此服装厂一次性批发 A 品牌服装 200 件,需要支付多少元?(3)零售商
11、到此服装厂一次性批发 A 品牌服装 x(100 x400)件,服装厂的利润为 w元,问:x 为何值时,w 最大?最大值是多少?第 9页(共 28页)24如图,四边形 ABCD 是正方形,点 F 是射线 AD 上的动点,连接 CF,以 CF 为对角线作正方形 CGFE(C,G,F,E 按逆时针排列),连接 BE,DG(1)当点 F 在线段 AD 上时求证:BEDG;求证:CDFDBE;(2)设正方形 ABCD 的面积为 S1,正方形 CGFE 的面积为 S2,以 C,G,D,F 为顶点的四边形的面积为 S3,当时,请直接写出的值25如图 1,直线 yx4 与 x 轴交于点 B,与 y 轴交于点
12、A,抛物线 yx2+bx+c 经过点 B 和点 C(0,4),ABO 沿射线 AB 方向以每秒个单位长度的速度平移,平移后的三角形记为DEF(点 A,B,O 的对应点分别为点 D,E,F),平移时间为 t(0t4)秒,射线 DF 交 x 轴于点 G,交抛物线于点 M,连接 ME第 10页(共 28页)(1)求抛物线的解析式;(2)当 tanEMF时,请直接写出 t 的值;(3)如图 2,点 N 在抛物线上,点 N 的横坐标是点 M 的横坐标的,连接 OM,NF,OM 与 NF 相交于点 P,当 NPFP 时,求 t 的值第 11页(共 28页)2020 年辽宁省盘锦市中考数学试卷年辽宁省盘锦市
13、中考数学试卷参考答案与试题解析参考答案与试题解析一、单选题(下列各题的备选答案中只有一个是正确的,请将正确答案的序号涂在答题一、单选题(下列各题的备选答案中只有一个是正确的,请将正确答案的序号涂在答题卡上,每小题卡上,每小题 3 分,共分,共 30 分)分)1【分析】有理数大小比较的法则:正数都大于 0;负数都小于 0;正数大于一切负数;两个负数,绝对值大的其值反而小,据此判断即可【解答】解:根据有理数比较大小的方法,可得101,在 1,1,0 这四个数中,最小的数是1故选:C【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正数都大于 0;负数都小于 0;正数大
14、于一切负数;两个负数,绝对值大的其值反而小2【分析】根据从正面看是主视图,可得答案【解答】解:从正面看第一层是 3 个小正方形,第二层右边 1 个小正方形故选:B【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图3【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则分别化简得出答案【解答】解:A、a3a3a6,原式计算错误,故此选项不合题意;B、a6a3a3,原式计算错误,故此选项不合题意;C、a3+a32a3,原式计算错误,故此选项不合题意;D、(a2)3a6,正确;故选:D【点评】此题主要考查了同底数幂的乘除运算以及幂的乘方运算,正确掌握相关运算法则是解题关键4【分析】
15、移项,合并同类项,系数化成 1,求得不等式的解集,在数轴上表示即可【解答】解:4x+1x+7,4xx71,3x6,第 12页(共 28页)x2;在数轴上表示为:故选:A【点评】本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键5【分析】根据圆内接四边形的性质、平行四边形和菱形的性质、中心对称图形的概念判断即可【解答】解:A、圆内接四边形的对角互补,本选项说法正确,符合题意;B、平行四边形的对角线不一定相等,本选项说法错误,不符合题意;C、菱形的四条边相等,但四个角不一定都相等,本选项说法错误,不符合题意;D、等边三角形不是中心对称图形,本选项说法错误,不符合题意;故选:A
16、【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题 判断命题的真假关键是要熟悉课本中的性质定理6【分析】先计算出样本中身高不低于 170cm 的频率,然后根据利用频率估计概率求解【解答】解:样本中身高不低于 170cm 的频率0.68,所以估计抽查该地区一名九年级男生的身高不低于 170cm 的概率是 0.68故选:C【点评】本题考查了利用频率估计概率:大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率用频率估计概率得到的是近似值,随试验次数的增多,值
17、越来越精确7【分析】根据方差的意义求解可得【解答】解:四人的平均成绩相同,而观察图形可知:丁比甲稳定有两次恰好为平均成绩,故选:D第 13页(共 28页)【点评】本题考查方差,解答本题的关键是明确题意,掌握方差的意义8【分析】首先设芦苇长 x 尺,则水深为(x1)尺,根据勾股定理可得方程(x1)2+52x2【解答】解:设芦苇长 x 尺,由题意得:(x1)2+52x2,故选:B【点评】此题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型9【分析】连接 OD、BD,通过证得ABD 是等腰直角三角形得出 ODA
18、B,进而证得 ODFC,即可得到DOEFBE,得出,进一步得到BOF60,OB2,然后根据弧长公式求得即可【解答】解:连接 OD、BD,在ABC 中,ABBC,ABC90,AC45,AB 是直径,ADB90,OAOB,ODAB,AOD90,AODABC,ODFC,DOEFBE,OBOD,OE:EB1:,tanBOF,BOF60,BF2,OB2,第 14页(共 28页)的长,故选:C【点评】本题考查了等腰直角三角形的性质,圆周角定理,三角形相似的判定和性质解直角三角形以及弧长公式等,作出辅助线构建直角三角形是解题的关键10【分析】分两种情况求出函数的解析式,再由函数解析式对各选项进行判断【解答】
19、解:四边形 ABCD 是边长为 1 的正方形,DAB90,ADAB,在ADE 和ABF 中,ADEABF(SAS),ADEABF,DEBF,DEG90,ADE+AEDAED+BEG,BEGADE,BEGABF,EGBF,DEBF,DEGE,EGBF,四边形 BFEG 是平行四边形,四边形 EFBG 的面积2BEF 的面积2BEAF,设 AEx,四边形 EFBG 的面积为 y,当 0 x1 时,y(1x)xx2+x;第 15页(共 28页)当 x1 时,y(x1)xx2x;综上可知,当 0 x1 时,函数图象是开口向下的抛物线;当 x1 时,函数图象是开口向上的抛物线,符合上述特征的只有 B,故
20、选:B【点评】本题综合考查了正方形的性质和二次函数图象及性质,分段求出函数的解析式是解题的关键二、填空题(每小题二、填空题(每小题 3 分,共分,共 18 分)分)11【分析】科学记数法的表示形式为 a10n的形式,其中 1|a|10,n 为整数确定 n的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同当原数绝对值10 时,n 是正数;当原数的绝对值1 时,n 是负数【解答】解:将数据 93000 用科学记数法表示为 9.3104故答案为:9.3104【点评】此题考查科学记数法的表示方法科学记数法的表示形式为 a10n的形式,其中 1|a|10,n 为整数,
21、表示时关键要正确确定 a 的值以及 n 的值12【分析】利用判别式的意义得到224m0,然后解关于 m 的不等式即可【解答】解:根据题意得224m0,解得 m1故答案为 m1【点评】本题考查了根的判别式:一元二次方程 ax2+bx+c0(a0)的根与b24ac有如下关系:当0 时,方程有两个不相等的实数根;当0 时,方程有两个相等的实数根;当0 时,方程无实数根13【分析】根据平行线的性质可证得1ACB+2,由160,ACB40可求解2 的度数第 16页(共 28页)【解答】解:直线 ab,1ACB+2,160,ACB40,2604020,故答案为 20【点评】本题主要考查平行线的性质,掌握平
22、行线的性质是解决问题的关键14【分析】利用相似三角形的性质求解即可【解答】解:如图,OABOAB,相似比为 3:2,B(3.6),B(2,4),根据对称性可知,OAB在第三象限时,B(2,4),满足条件的点 B的坐标为(2,4)或(2,4)故答案为(2,4)或(2,4)【点评】本题考查位似变换,相似三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,注意一题多解15【分析】如图,连接 EB证明AEB 是等腰直角三角形,利用勾股定理求出 AE,EB,EC 即可【解答】解:如图,连接 EB由作图可知,MN 垂直平分线段 AB,第 17页(共 28页)EAEB,AEBA45,AEB9
23、0,AB4,EAEB2,四边形 ABCD 是菱形,ADBC,EBCAEB90,EC2,故答案为 2【点评】本题考查作图基本作图,线段的垂直平分线的性质,勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型16【分析】设 CFx,CHy,根据“四边形 ABHE 与四边形 BCFG 的面积相等”得出 x与 y 的关系式,再证明EMHMFC,由相似三角形的性质列出 x 的方程,便可解答得出答案【解答】解:设 CFx,CHy,则 BH2y,四边形 ABHE 与四边形 BCFG 的面积相等,2y2x,y22x,由折叠知,MFDF1x,EMEDCHy22x,EMFD90,EMH
24、+CMF90,C90,CMF+CFM90,EMHMFC,EHMC90,EMHMFC,即,解得,x第 18页(共 28页)经检验,x是原方程的解,故答案为:【点评】本题主要考查了矩形的性质,矩形的面积,相似三角形的性质与判定,勾股定理,方程思想,关键是证明三角形相似列出方程三、解答题(本大题三、解答题(本大题 9 个小题,共个小题,共 102 分)分)17【分析】根据分式的乘法可以化简题目中的式子,然后将 a 的值代入化简后的式子即可解答本题【解答】解:,当 a+1 时,原式【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法18【分析】(1)由概率公式即可得出结果;(2)画出
25、树状图,由树状图求得所有等可能的结果与抽到的两张卡片上标有的数字之和等于 6 的结果,再由概率公式即可求得答案【解答】解:(1)随机抽取一张卡片,卡片上的数字是奇数的概率为;故答案为:;(2)画树状图如图:共有 16 个等可能的结果,两次抽取的卡片上的数字和等于 6 的结果有 3 个,两次抽取的卡片上的数字和等于 6 的概率【点评】本题考查了列表法与树状图法、概率公式,解答本题的关键是明确题意,画出第 19页(共 28页)相应的树状图,求出相应的概率19【分析】(1)根据 B 组的频数和所占的百分比,可以求得 m 的值,然后即可计算出 n 的值;(2)根据频数分布表中的数据,可以得到中位数落在
26、哪一组;(3)根据频数分布表中的数据,可以计算出该校有多少名学生平均每天课外阅读时间不少于 1 小时【解答】解:(1)m2040%50,2n+(n+10)50205,解得,n5,A 组所占的百分比为:2550100%20%,C 组所占的百分比为:(5+10)50100%30%,补全的扇形统计图如右图所示;(2)A 组有 2510(人),B 组有 20 人,抽查的学生一共有 50 人,所抽取的 m 名学生平均每天课外阅读时间的中位数落在 B 组;(3)1500600(名),答:该校有 600 名学生平均每天课外阅读时间不少于 1 小时【点评】本题考查频数分布表、扇形统计图、用样本估计总体、中位数
27、,解答本题的关键是明确题意,利用数形结合的思想解答20【分析】(1)根据旋转的性质和全等三角形的性质求得 C 点的坐标,即可求得结论;(2)由解析式设出 P 点的坐标,根据三角形面积公式得出方程,解方程可求得 P 点坐标【解答】解:(1)将线段 AB 绕点 B 逆时针旋转 90得到线段 BC,ABBC,ABC90,CDOB,CDBAOBABC90,ABO+CBDCBD+DCB90,第 20页(共 28页)ABODCB,ABOBCD(AAS),CDOB3,BDOA2,OD321,C 点的坐标为(3,1),k313,反比例函数的解析式为:;(2)设 P(,m),CDy 轴,CD3,由PCD 的面积
28、为 3 得:CD|m1|3,3|m1|3,m12,m3 或 m1,当 m3 时,1,当 m3 时,1,点 P 的坐标为(1,3)或(1,3)【点评】本题考查了待定系数法求反比例函数的解析式,全等三角形的判定和性质,旋转的性质,三角形的面积的计算,正确的识别图形是解题的关键21【分析】过 C 作 CEAB 于 E,则四边形 BDCE 是矩形,由矩形的性质得到 BECD1.6m,CEBD4m,根据三角函数的定义即可得到结论【解答】解:选择 CD1.6m,BD4m,ACE67,过 C 作 CEAB 于 E,则四边形 BDCE 是矩形,第 21页(共 28页)BECD1.6m,CEBD4m,在 RtA
29、CE 中,ACE67,tanACE,2.36,AE9.4m,ABAE+BE9.4+1.611.0(m),答:建筑物 AB 的高度为 11.0m【点评】本题考查了解直角三角形,仰角俯角问题,矩形的性质,正确的作出辅助线构造直角三角形是解题的关键22【分析】(1)想办法证明B+BAE90即可解决问题(2)连接 OA,想办法证明 OAAG 即可解决问题过点 C 作 CHAG 于 H设 CGx,GHy利用相似三角形的性质构建方程组解决问题即可【解答】(1)证明:EFAB,AFE90,AEF+EAF90,AEFD,ABED,ABE+EAF90,AEB90,ADBC(2)证明:连接 OA,ACADBC,A
30、EED,CACD,DCAD,GAE2D,CAGCADD,OCOA,第 22页(共 28页)OCAOAC,CEA90,CAE+ACE90,CAG+OAC90,OAAG,AG 是O 的切线解:过点 C 作 CHAG 于 H设 CGx,GHyCA 平分GAE,CHAG,CEAE,CHCE,AECAHC90,ACAC,ECCH,RtACERtACH(HL),AEAH,EFAB,BC 是直径,BFEBAC,EFAC,CE4,BE10,BCAD,CAEABC,AECAEB90,AEBCEA,AE2410,AE0,AE2,AHAE2,第 23页(共 28页)GG,CHGAEG90,GHCGEA,解得 x【点
31、评】本题属于圆综合题,考查了切线的判定,垂径定理,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型23【分析】(1)利用待定系数法求出一次函数解析式即可;(2)当 x200 时,代入 yx+110,确定批发单价,根据总价批发单价200,进而求出答案;(3)首先根据服装厂获利 w 元,当 100 x300 且 x 为 10 整数倍时,得出 w 与 x 的函数关系式,进而得出最值,再利用当 300 x400 时求出最值,进而比较得出即可【解答】解:(1)当 100 x300 时,设 y 与 x 的函数关系式为:ykx+b,根据题意得出:,解得
32、:,y 与 x 的函数关系式为:yx+110,故答案为:yx+110;(2)当 x200 时,y20+11090,第 24页(共 28页)9020018000(元),答:某零售商一次性批发 A 品牌服装 200 件,需要支付 18000 元;(3)分两种情况:当 100 x300 时,w(x+11071)x+39x(x195)2+3802.5,批发件数 x 为 10 的正整数倍,当 x190 或 200 时,w 有最大值是:(200195)2+3802.53800;当 300 x400 时,w(8071)x9x,当 x400 时,w 有最大值是:94003600,一次性批发 A 品牌服装 x(
33、100 x400)件时,x 为 190 元或 200 元时,w 最大,最大值是 3800 元【点评】此题主要考查了二次函数的应用,待定系数法求一次函数解析式以及二次函数最值求法等知识,利用 x 的取值范围不同得出函数解析式是解题关键24【分析】(1)证明BCEDCG(SAS)可得结论如图 1 中,设 CD 交 FG 于点 O,过点 G 作 GTDG 交 CD 于 T证明DGT 是等腰直角三角形,再证明DGFTGC 即可解决问题(2)分两种情形:当点 F 在线段 AD 上时,如图 1 中,当点 F 在 AD 的延长线上时,分别求解即可【解答】(1)证明:如图 1 中,四边形 ABCD,四边形 E
34、FGC 都是正方形,BCDECG90,CBCD,CECG,BCEDCG,BCEDCG(SAS),BEDG第 25页(共 28页)证明:如图 1 中,设 CD 交 FG 于点 O,过点 G 作 GTDG 交 CD 于 TEDCEGC90,C,F,D,G 四点共圆,CDGCFG45,GTDG,DGT90,GDTDTG45,GDGT,DGTFGC90,DGFTGC,GFGC,GDFGTC(SAS),DFCT,CDDFCDCTDTDG(2)解:当点 F 在线段 AD 上时,如图 1 中,可以假设 S213k,S125k,BCCD5,CECG,CF,在 RtCDF 中,DF,DFCT,DT4DGGT2,
35、S3SGFC+SDFG+2k,第 26页(共 28页)当点 F 在 AD 的延长线上时,同法可得,S3SDCF+SFGC5+9k,综上所述,的值为或【点评】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,四边形的面积等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题25【分析】(1)求出等 B 的坐标,利用待定系数法解决问题即可(2)分两种情形:如图 1 中,当点 M 在线段 DF 的上方时,求出 DM7,构建方程求解即可,当点 M 在线段 DF 上时,DM1,构建方程求解即可(3)如图 2 中,过点 N 作 NTy 轴
36、于 T由题意 D(t,t4),则 M(t,t2+t+4),N(t,t2+t+4),T(t,t2+t+2),F(t,t),利用全等三角形的性质证明NTMF,由此构建方程解决问题即可【解答】解:(1)直线 yx4 与 x 轴交于点 B,与 y 轴交于点 A,B(4,0),A(0,4),把 B(4,0),C(0,4)代入 yx2+bx+c 得到,解得,抛物线的解析式为 yx2+x+4(2)如图 1 中,当点 M 在线段 DF 的上方时,第 27页(共 28页)由题意得,D(t,t4),则 M(t,t2+t+4),DMt2+8,在 RtMEF 中,tanEMF,MF3,DFEF4,DM7,t2+87,
37、t或(舍弃)当点 M 在线段 DF 上时,DM1,t2+81,解得 t或(舍弃),综上所述,满足条件的 t 的值为或(3)如图 2 中,过点 N 作 NTy 轴于 T由题意得 D(t,t4),则 M(t,t2+t+4),N(t,t2+t+4),T(t,t2+t+2),F(t,t)第 28页(共 28页)NTFM,PNTPFM,NPTMPF,PNPF,NPTFPM(ASA),NTMF,t2+t+4(t2+t+2)t2+t+4t,解得 t或(舍弃),【点评】本题属于二次函数综合题,考查了二次函数的性质,待定系数法,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2020/9/15 8:50:17;用户:18366185883;邮箱:18366185883;学号:22597006