《第二章 测量误差与数据处理.ppt》由会员分享,可在线阅读,更多相关《第二章 测量误差与数据处理.ppt(49页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College第二章第二章 测量误差与数据处理测量误差与数据处理自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College2.1 误差的基本概念误差的基本概念2.2 随机误差随机误差2.3 有限次测量误差与分析处理有限次测量误差与分析处理2.4 系统误差系统误差2.5 粗大误差粗大误差2.6 测量不确定度测量不确定度2.7 测
2、量数据的处理测量数据的处理主要内容主要内容自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College误差存在的普遍性:误差存在的普遍性:实验方法、实验设备的局限性,周围环境的影响,人为因素,测得的数值和真值之间总存在一定差异,在数值上表现为误差。误差存在的必然性:误差存在的必然性:随着科技的水平的不断进步和人类认识水平的发展,误差被控制得越来越小,但始终不能完全消除,即误差是不受人们的主观影响而客观存在的。为什么要研究误差?为什么要研究误差?研究误差大小研究误差大小/来源来源 误差
3、误差 测量精度。测量精度。为什么说误差的存在具有普遍性和必然性?为什么说误差的存在具有普遍性和必然性?自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College2.1 误差的基本概念2.1.1测量误差的定义测量误差:测量所得数据与其相应的真值之差测量误差:测量所得数据与其相应的真值之差。=X X0-测量误差-测量结果0-真值测量误差-绝对误差真值:真值:是被测量本身所具有的真实大小,只有通过完善的测量才能获得。实际上,由于被测量的定义和测量都不可能完善,因而真值往往未知,只是一个理
4、想的概念。自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College理论真值:设计时给定或用数学、物理公式计算出的给定值;如:三角形内角和180 约定真值:世界各国公认的几何量和物理量的最高基准的量值。如:公制热力学温度基准:开(K)约定是水处于三相点时温度值的1/273.16。相对量,高一级精度仪表的测量值。如砝码、称。自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering Co
5、llege相对误差(示值误差、读数误差“R”):测量的绝对误差与被测量的真值之比当绝对误差很小时用符号表示:自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College引用误差引用误差(满度误差、额定误差)满度误差、额定误差):在多档和连续刻度的仪表中,因各档示值和对应真值都不同,计算相对误差所用的分母也不同,为此定义了引用误差。L最大刻度与最小刻度之差最大引用误差最大引用误差 :常用最大引用误差表示仪表的质量,进行准确度分级常用最大引用误差表示仪表的质量,进行准确度分级自动化工程学
6、院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College举例:DN50 的浮子流量计的流量测量范围:1.616m3/h,其引用误差为1.5%,则测量下限时的读数误差为多少?解:解:满度误差:绝对误差:测量下限1.6m3/h时的读数误差:说明:读数误差更能反映当前测量值的准确性。说明:读数误差更能反映当前测量值的准确性。自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College两种
7、相对误差的差别:一般按行业标准或行业惯例、企业标准确定,不同国家标准有区别。例如:浮子流量计采用引用误差;涡轮/涡街/电磁流量计采用示值误差通常:模拟信号输出的仪表引用误差;数字或脉冲信号表读数误差。准确度等级:(行业标准)0.1级,0.2级,0.5级,1级,1.5级,由误差的性质和大小决定。等级归属:就低原则若误差刚好在两极之间,则该仪表应归属于最接近的精度较低的一级,如0.3%归属0.5级。自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College自动化工程学院自动化工程学院自
8、动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院2.1.2 误差的来源 标准器误差 仪器仪表误差 辅助设备和附件误差检测环境引起的误差环境条件(温度、湿度、气压等)差异 检测方法误差采样方法、测量重复次数、取样时间 检测人员造成的误差人员视觉、读数误差、经验、熟练程度、精神疲劳程度等等自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College2.1.3 误差的分类按特性规律:系统误差、随机误差、粗大误差按特性规律:系统误差、随机误差、粗大误差 系统
9、误差(系统误差(System errorSystem error)-有规律可循,由特定原因引起、具有一定因果关系并按确定规律产生,如装置、环境、动力源变化、人为因素。理论分析/实验验证-原因和规律-减少/消除 随机误差(随机误差(Random errorRandom error)因许多不确定性因素而随机发生,偶然性(不明确、无规律),概率和统计性处理(无法消除/修正)粗大误差(粗大误差(Abnormal errorAbnormal error)检测系统各组成环节发生异常和故障等引起异常误差-混为系统误差和随机误差-测量结果失去意义 。分离-防止自动化工程学院自动化工程学院自动化工程学院自动化工
10、程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College2.1.4 2.1.4 测量的准确度、精密度测量的准确度、精密度准确度(精确度):准确度(精确度):表示测量结果与真实值接近的程度,简称精度。反映系统误差与随机误差对测量结果综合影响的程度。精密度:精密度:表示测量值重复一致的程度,反映了随机误差影响的程度。随机误差越小,测量结果越精密。重复性。例:坐标原点-真值点的位置;点-多次测量结果自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation En
11、gineering College2.2 随机误差随机误差2.2.1 随机误差的正态分布性质随机误差的正态分布性质注:本节是在假定粗大误差及系统误差已被排除的注:本节是在假定粗大误差及系统误差已被排除的前提下来探讨随机误差的。前提下来探讨随机误差的。随机误差的定义:随机误差的定义:在测量的过程中,因存在许多随机因素对测量造在测量的过程中,因存在许多随机因素对测量造成的干扰,而使得测量附加有大小和方向都难于预测成的干扰,而使得测量附加有大小和方向都难于预测的测量误差。的测量误差。条件:条件:测量次数足够多;仪器精度和灵敏度足够高。测量次数足够多;仪器精度和灵敏度足够高。性质:性质:有界性、单峰性
12、、对称性、抵偿性。有界性、单峰性、对称性、抵偿性。自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College(1).有界性有界性 绝对值小的误差出现的概率大,绝对值大的误差绝对值小的误差出现的概率大,绝对值大的误差出现的概率小。零误差出现的概率最大。出现的概率小。零误差出现的概率最大。(2).单峰性单峰性 在一定测量条件下,测量的随机误差总是在一定在一定测量条件下,测量的随机误差总是在一定的、相当窄的范围内变动,绝对值很大的误差出现的的、相当窄的范围内变动,绝对值很大的误差出现的概
13、率接近于零。概率接近于零。即随机误差的绝对值不会超过一定的即随机误差的绝对值不会超过一定的界限。界限。(3).对称性对称性 大小相等、符号相反的随机误差出现的概率相同。大小相等、符号相反的随机误差出现的概率相同。自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College(4).抵偿性抵偿性 在等精度测量条件下,当测量次数趋于无穷大时,在等精度测量条件下,当测量次数趋于无穷大时,全部随机误差的算术平均值趋于零。全部随机误差的算术平均值趋于零。随机误差的分布随机误差的分布测量列:测量列
14、:对某一固定量对某一固定量做做n 次测量,测得次测量,测得x1,x2,x3.,xn,称为测量列,其概率密度函数为,称为测量列,其概率密度函数为自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College坐标坐标不同不同坐标坐标不同不同:均方根均方根误误差差/标标准准误误差差真真值值,期望,期望值值随机误差的分布密度函数:自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering Coll
15、ege自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College随机误差的分布密度函数:极值点:当 时,即=0 f()取峰值,拐点:当 时,即=处为拐点。表示分散性表示分散性自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College 正态分布规律是研究随机误差的理论基础,其实用价值为:大量(工程、实验)测量列的随机误差都服从正态分布;造成随机误差的因素很多,理论上可以证
16、明,影响因素越多,越服从正态分布。为了方便,某些精度要求不太高的地方,非正态分布也用正态分布处理;有时测量次数较少,服从什么分布尚不清楚,可用正态分布代替。自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College2.2.2 正态分布密度函数与概率积分概率积分:随机误差出现在某一区间的概率可以用概率积分计算:由于概率对称性:令a=z,则z=a/,作归一化处理。z均方根误差的倍数;(z)出现的概率自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动
17、化工程学院自动化工程学院Automation Engineering Collegez=1,(z)=0.68269z=2,(z)=0.95450z=3,(z)=0.99730f()0 2 3-2-3自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College2.4 系统误差系统误差原因:由于测量设备、试验装置不完善,或安装、调整、由于测量设备、试验装置不完善,或安装、调整、使用不得当引起的误差。如测量仪表未经校准投入使用。使用不得当引起的误差。如测量仪表未经校准投入使用。由于外界环境
18、影响而引起的误差。如温度漂移、测由于外界环境影响而引起的误差。如温度漂移、测量现场电磁场的干扰等。量现场电磁场的干扰等。由于测量方法不正确,如使用大惯性仪表测量脉动由于测量方法不正确,如使用大惯性仪表测量脉动气流的压力,则测量结果不可能是气流的实际压力,甚气流的压力,则测量结果不可能是气流的实际压力,甚至也不是真正的时均值。至也不是真正的时均值。测量人员方面因素引起误差。如测量者在刻度上估测量人员方面因素引起误差。如测量者在刻度上估计读数时,习惯偏于某一方向;动态测量时,记录某一计读数时,习惯偏于某一方向;动态测量时,记录某一信号有滞后的倾向。信号有滞后的倾向。自动化工程学院自动化工程学院自动
19、化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College特点:再再现现性性-偏差(偏差(Deviation)理理论论分析分析/实验验证实验验证-原因和原因和规规律律-减少减少/消除消除2.4.1系统误差的特点与性质系统误差的特点与性质设设有一列有一列测测定定值值 x1、x2.,xn 若若测测定定值值 xi中含有系中含有系统误统误差差i,消除系,消除系统误统误差后其差后其值为值为 ,则则其算其算术术平均平均值为值为自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自
20、动化工程学院Automation Engineering College即即为为消除系消除系统误统误差后的残差差后的残差测测定定值值 xi的残差的残差vi为为消除系消除系统误统误差后差后测测定定值值的算的算术术平均平均值值自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College结论:结论:(1).恒定恒定值值系系统误统误差,由于差,由于所以所以-消除系消除系统误统误差后差后测测量列的均方根量列的均方根误误差差 恒定系恒定系统误统误差的存在,只影响差的存在,只影响测测量量结结果的准
21、确性,果的准确性,不影响不影响测测量的精密度。量的精密度。自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College(2).对变值对变值系系统误统误差,由于差,由于所以所以 变值变值系系统误统误差的存在,不差的存在,不仅仅影响影响测测量量结结果的准确果的准确性,而且影响性,而且影响测测量的精密度。量的精密度。自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College2.
22、4.2系统误差的检查与判别系统误差的检查与判别(1 1)根据测定值残差的变化判断变值系统误差根据测定值残差的变化判断变值系统误差 如果测定值中,系统误差比随机误差大,那么残差如果测定值中,系统误差比随机误差大,那么残差的符号主要由的符号主要由 项的符号决定。项的符号决定。因此,将残差按照因此,将残差按照测测量的量的顺顺序序进进行排列,行排列,这这些残些残差的符号差的符号变变化将反映出化将反映出 的符号的符号变换变换,进进而反映出而反映出 的符号的符号变变化,由于化,由于变值变值系系统误统误差差 的的变变化具有某种化具有某种规规律性,因而残差律性,因而残差 的的变变化也具有大致化也具有大致相同的
23、相同的规规律律自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College准则准则1 1 将测量列中诸测定值按测量先后顺序排列,若将测量列中诸测定值按测量先后顺序排列,若残差的残差的大小大小有规则的向一个方向变化,则测量列中有累有规则的向一个方向变化,则测量列中有累进的系统误差。进的系统误差。准则准则2 2 将测量列中诸测定值按测量先后顺序排列,若将测量列中诸测定值按测量先后顺序排列,若残差的残差的符号符号呈有规律的交替变化,则测量列中含有周期呈有规律的交替变化,则测量列中含有周期性
24、系统误差。性系统误差。以上准则的前提都是系统误差大于随机误差的情况,以上准则的前提都是系统误差大于随机误差的情况,若随机误差起主要作用,还要进一步依靠统计的方法来若随机误差起主要作用,还要进一步依靠统计的方法来判断。判断。自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College(2 2)利用判据判定变值系统误差的存在利用判据判定变值系统误差的存在马利科夫准则马利科夫准则 对某一测量量进行多次等精度测量,获对某一测量量进行多次等精度测量,获得一列测定值得一列测定值x1、x2.,xn
25、,按测量先后顺序排列,各,按测量先后顺序排列,各测定值残差依次为测定值残差依次为v1、v2.,vn,把前面,把前面k k个残差和后个残差和后面面(n-k)个残差分别求和个残差分别求和(当当n n为偶数时,取为偶数时,取k=n/2,当当n n为奇数时,取为奇数时,取k=k=(n+1n+1)/2/2),),并取其差值得并取其差值得 若差值若差值D D显著异于零,则测量列中含有累进系统误差。显著异于零,则测量列中含有累进系统误差。自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College
26、阿贝阿贝-赫梅特准则赫梅特准则 对某一测量量进行多次等精度测量,对某一测量量进行多次等精度测量,获得一列测定值获得一列测定值x1、x2.,xn,按测量先后顺序排列,按测量先后顺序排列,各测定值残差依次为各测定值残差依次为v1、v2.,vn,设,设若若则可以认为该测量列中含有周期性系统误差。则可以认为该测量列中含有周期性系统误差。自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College例:例:对对某恒温箱内的温度某恒温箱内的温度进进行行测测量量10次,次,获获得如下数得如下数据:(
27、据:(单单位:位:)20.06,20.07,20.06,20.08,20.10,20.12,20.14,20.18,20.18,20.21判断判断该测该测量列中是否存在量列中是否存在变值变值系系统误统误差。差。解:解:计计算各算各测测量量值值的残差的残差vi,并按,并按测测量量顺顺序排列序排列-0.06,-0.05,-0.06,-0.04,-0.02,0,+0.02,+0.06,+0.06,+0.09 由准则由准则1 1判断,残差由负到正,其数值逐渐增大,故判断,残差由负到正,其数值逐渐增大,故测量列中含有累进系统误差。测量列中含有累进系统误差。自动化工程学院自动化工程学院自动化工程学院自动化
28、工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College 由马利科夫准则判断由马利科夫准则判断差值差值D D显著异于零,则测量列中含有累进系统误差。显著异于零,则测量列中含有累进系统误差。由阿贝由阿贝-赫梅特准则判断赫梅特准则判断测量列中含有周测量列中含有周期性系统误差。期性系统误差。自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College2.4.3 系统误差的减小与消除系统误差的减小与消除 消除恒值系统误差常用
29、的方法是对置法,也称交换消除恒值系统误差常用的方法是对置法,也称交换法。法。交换某些测量条件,使引起恒值系统误差的原因交换某些测量条件,使引起恒值系统误差的原因以相反的方向影响测量结果,从而中和其影响。以相反的方向影响测量结果,从而中和其影响。消除线性变化的累进误差最有效的方法是对称观察消除线性变化的累进误差最有效的方法是对称观察法。法。将测量以某一时刻为中心对称地安排,取各对点两将测量以某一时刻为中心对称地安排,取各对点两次测量算术平均值作为测量结果,即可消除线性变化的次测量算术平均值作为测量结果,即可消除线性变化的累进系统误差。累进系统误差。自动化工程学院自动化工程学院自动化工程学院自动化
30、工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College 半周期偶数观测法,可以很好的消除周期性变化的半周期偶数观测法,可以很好的消除周期性变化的系统误差。系统误差。周期性系统误差可表示为周期性系统误差可表示为t=t0时,周期性系统误差时,周期性系统误差0为为t=t0+T/2时,周期性系统误差时,周期性系统误差1为为自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College而而所以,测得一个数据后,相隔所以,测得一
31、个数据后,相隔t的半个周期再测一个的半个周期再测一个数据,取二者的平均值即可消去周期性系统误差。数据,取二者的平均值即可消去周期性系统误差。自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College2.5 粗大误差粗大误差 粗大误差指不能用测量客观条件解释为合理的那粗大误差指不能用测量客观条件解释为合理的那些突出误差,它明显地歪曲了测量结果,含有粗大误些突出误差,它明显地歪曲了测量结果,含有粗大误差的测定值的异常数据,应予以剔出。差的测定值的异常数据,应予以剔出。2.5.1 拉伊特
32、准则拉伊特准则 如果测量列中某一测定值如果测量列中某一测定值x xi i其残差其残差v vi i的绝对值大的绝对值大于该测量列标准差的于该测量列标准差的3 3倍,那么可以认为倍,那么可以认为x xi i为坏值,为坏值,应予以剔出。应予以剔出。实际使用时,取实际使用时,取自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College 剔出某个含有粗大误差的坏值剔出某个含有粗大误差的坏值xi后,应重新计算后,应重新计算新测量列的算术平均值及标准差,判断余下的数据中新测量列的算术平均值及标准
33、差,判断余下的数据中是否还有含粗大误差的坏值。是否还有含粗大误差的坏值。注意注意:当当n 10时,拉伊特准则失效。时,拉伊特准则失效。2.5.2 格拉布斯准则(适用于测量次数较少)格拉布斯准则(适用于测量次数较少)对某一测量量进行多次等精度测量,获得一列对某一测量量进行多次等精度测量,获得一列测定值测定值x1、x2.,xn,若测定值符合正态分布,若测定值符合正态分布,N(x;,N(x;,),),则可计算出子样平均值和测量列标则可计算出子样平均值和测量列标准差的估计值。准差的估计值。自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院A
34、utomation Engineering College 将将xi由小到大排列由小到大排列 计算出统计量计算出统计量取定危险率取定危险率a,可求得临界值,可求得临界值g0(n,a)自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College若测量列中最大测定值与最小测定值的残差满足若测量列中最大测定值与最小测定值的残差满足者,则可以认为含有残差者,则可以认为含有残差vi的测定值是坏值,应予以的测定值是坏值,应予以剔出。剔出。剔出某个含有粗大误差的坏值剔出某个含有粗大误差的坏值xi后
35、,应重新判断后,应重新判断余下的数据中是否还有含粗大误差的坏值。直到余下的数据中是否还有含粗大误差的坏值。直到为止。为止。自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College2.6 误差的传递与综合误差的传递与综合 间接测量量误差的种类、性质与数值大小将决定间接测量量误差的种类、性质与数值大小将决定于直接测量量误差的种类、性质与数值。于直接测量量误差的种类、性质与数值。由直接测量由直接测量量的误差求间接测量量的误差称为误差的传递。量的误差求间接测量量的误差称为误差的传递。(1
36、 1)系统误差的传递系统误差的传递2.6.1 误差的传递误差的传递 假设被测量假设被测量y与各直接量与各直接量x1、x2.,xn 之间的函数之间的函数关系为关系为y=f(x1、x2.,xn)(1)如果各直接量的系统误差为如果各直接量的系统误差为1、2.,n,由此引由此引起的被起的被测测量量y的的误误差也将是系差也将是系统误统误差,并以差,并以y表示表示自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College 对(对(1)式微分可得)式微分可得 由于误差很微小,可以用由于误差很微小
37、,可以用y、1、2.,n分分别别近近似代替微分量似代替微分量dy、dx1、dxn,则则 -系统误差的传递公式系统误差的传递公式-为第为第i个直接量个直接量xi对被测量对被测量y的误差的传递系数的误差的传递系数自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College(2 2)随机误差的传递随机误差的传递 假设被测量假设被测量y与各直接量与各直接量x1、x2.,xn 之间的函数之间的函数关系为关系为y=f(x1、x2.,xn)(2)如果各直接量的随机误差的标准误差为如果各直接量的随机
38、误差的标准误差为1、2.,n,由此引起的被由此引起的被测测量量y的的误误差也将是随机差也将是随机误误差,差,并以并以y表示,经过推倒可得表示,经过推倒可得 如果各直接量相互独立,互不关联,则,如果各直接量相互独立,互不关联,则,自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College-用标准误差表示的随机误差的传递公式用标准误差表示的随机误差的传递公式 如果各直接量的误差各自独立,且服从正态分布,如果各直接量的误差各自独立,且服从正态分布,则误差传递公式可以写成则误差传递公式可以
39、写成y、1、2.,n分分别为别为y、x1、xn 的极限的极限误误差。差。-用极限误差表示的随机误差的传递公式用极限误差表示的随机误差的传递公式注:极限误差为标准误差的注:极限误差为标准误差的3 3倍倍自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College2.6.1 误差的合成误差的合成 在实际测量中,测量结果的误差一般都是由多个因在实际测量中,测量结果的误差一般都是由多个因素引起的,由某个因素单独影响引起的误差称为单项素引起的,由某个因素单独影响引起的误差称为单项误差,而测量的
40、总误差则是各因素单项误差的综合结误差,而测量的总误差则是各因素单项误差的综合结果。果。由各单项误差求总误差称为误差综合。由各单项误差求总误差称为误差综合。误差合成原则:误差合成原则:全面分析误差来源,无遗漏、不重复;全面分析误差来源,无遗漏、不重复;区分误差种类和分布,不同情况采用不同的合成方区分误差种类和分布,不同情况采用不同的合成方法。法。自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College(1 1)随机误差的合成随机误差的合成 如各单项误差均为正态分布的随机误差,标准误
41、差如各单项误差均为正态分布的随机误差,标准误差为为1、2.,n,那么合成后的那么合成后的总误总误差差为为 若各单项误差各自独立,则合成公式可以写成若各单项误差各自独立,则合成公式可以写成自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College 若各单项误差服从不同的概率分布,工程中常用广若各单项误差服从不同的概率分布,工程中常用广义的方和根法进行误差的合成,合成公式可以写成义的方和根法进行误差的合成,合成公式可以写成 对于正态分布对于正态分布Ki取取3;均匀分布;均匀分布Ki取取
42、1.73;自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College(2 2)系统误差的合成系统误差的合成 如各单项误差为恒值系统误差时,如各单项误差为恒值系统误差时,误误差合成公式差合成公式为为 对于未定系统误差,鉴于它们显示出某种随机性,对于未定系统误差,鉴于它们显示出某种随机性,因此一般采用随机误差的广义方和根法进行合成。但因此一般采用随机误差的广义方和根法进行合成。但当单项误差个数较少(当单项误差个数较少(n 3)时,用广义合成法得出)时,用广义合成法得出的总误差比实际值偏
43、小,而改用绝对和法合成较切合的总误差比实际值偏小,而改用绝对和法合成较切合实际。绝对和法合成公式为实际。绝对和法合成公式为自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College e,ei-分别为总误差和第分别为总误差和第i项单项误差的极限误差,项单项误差的极限误差,(未定系统误差的极限误差用符号(未定系统误差的极限误差用符号“e”表示,以示表示,以示与随机误差极限误差与随机误差极限误差的区别。的区别。(3 3)不同性质误差的合成不同性质误差的合成 如各单项误差中既有随机误差又有
44、未定系统误差如各单项误差中既有随机误差又有未定系统误差时,一般建议用广义方和根法时,一般建议用广义方和根法合成,合成公式合成,合成公式为为 -总误差;总误差;e、-分分别为别为各各单项单项未定系未定系统误统误差合成后的差合成后的总误总误差和差和各各单项单项随机随机误误差合成后的差合成后的总误总误差;差;K1、K2、K-分分别为总别为总未定系未定系统误统误差、差、总总随机随机误误差和差和总误总误差的置信系数。差的置信系数。自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院自动化工程学院Automation Engineering College本章放映结束!本章放映结束!