《中国粮食总产量多因素分析.docx》由会员分享,可在线阅读,更多相关《中国粮食总产量多因素分析.docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、中国粮食总产量多因素分析专业年级:13金融(2)班 学号:201312030140姓名:谢昊摘要:本文选取1990年到2013年的相关数据,应用计量经济学所学 知识对根据经济理论选取的影响我国粮食产量的各因素进行分析、检 验,并对其影响程度的大小进行定量分析,进一步明确和完善相关的 经济学知识。关键词:粮食产量粮食播种面积农用机械总动力有效灌溉面积农 业化肥使用量一、文献综述农业作为我国最基础的产业,农产品的每年的产量直接关系着我 们的民生,故而粮食的产量一直是我们最关心的。影响因素的分析首先,粮食作为农作物,其产量肯定会受到农用化肥施用量条件的影 响其次,我认为粮食的播种面积对于粮食产量也有
2、一些影响最后,农业机械总动力也是影响粮食产量的一大重要因素二、数据收集与模型的建立(一)数据收集1983年一2009年中国粮食生产与相关投入的资料(表1)年份粮食总产 量Y粮食耕种 面积(xl)农用化肥施用 量(x2)农业机械总动力(x3)1990446241134662590. 3287081991435291123142805. 1293891992442641105602930. 2303082、F检验针对HO: 3 1=3 2=0,给定显著性水平a=0. 05,在F分布表中查出 自由度为k1 = 2和n k = 20的临界值Fa (2,20) =3.49,由表 中得到 F=138. 3
3、617Fa (2, 20) =3.49,应拒绝原假设 HO: B 1二 3 2=0,说明回归方程显著,解释变量 “粮食耕种面积”和“农用 化肥施用量”对被解释变量“粮食总产量”有显著影响。3 t检验针对H0:1=0,和H0e二0,由上表可以看出,t(A ) =-3. 722202, t (4)=7.416045, t (夕3) =9. 719934,取 a=0.05,查表 ta025(20) 二2. 086.因为 t ( 03)t0.025(20),所以拒绝 H0:仇二3 因为 t (A ) t0025(20),所以拒绝 HO: A =0,因为 t(A ) t0 025 (20),所以接受HO
4、 :夕尸0。对斜率系数的显著性表明,解释变 量 “粮食耕种面积”和“农用化肥施用量”对被解释变量“粮食总 产量”有显著影响。四、结论分析和政策建议(一)主要结论1)从模型可以看出农民对化肥的投入量,即模型中的化肥施用 量,是影响粮食总产量增产的最显著因素,说明我国目前农业生产中, 农民对农业的投入所产生的效益最大。2)从模型可以看出,粮食作物耕种面积也是影响粮食总产量的重要因素之一,扩大粮食作物耕种面积无疑是可以使粮食增产的。3)农业机械化是农业现代化的重要内容和主要标志之一,而通过对模型的回归分析,可看出我国的农业机械化程度是较低的,对我 国的粮食总产量增产贡献十分低下。(二)政策建议1)首
5、先,在短期内为缓解粮食供应紧张,应提高农民种粮的积 极性扩大粮食耕种面积,这是增加粮食总产量的唯一办法。农民积极 性主要取决于种粮食的收益及其预期,收益则是卖粮收入与成本的差 额。因此,应该双管齐下,稳定并提高粮食价格,控制农用物资价格 的过快增长,在涉农物资上实行严格的价格管制,控制种粮的成本。 在提高农民积极性的同时,也得以增加了化肥的施用量,在一定程度 上,影响粮食总产量的增产。但是,由于我国土地后备资源有限,且粮食耕种面积已占耕地总 面积较大比例(75%),其调整幅度不大;在一定程度上是一个既定的前 提。从我国粮食生产的发展来看,总产量的增长主要取决于单位面积 产量的提高。而单位面积产
6、量直接决定于农户的资本和劳动投入,即 农户的种粮积极性;同时受经济体制和政策、科技进步状况和市场环 境等强有力的影响。因此,我们一方面要坚持最严格的耕地保护制度,控制非农业占 地,建立基本农田保护区,确保基本农田总量不减少、质量不下降。 一方面要加强对现有耕地的开发,通过进一步改进耕作制度和应用优 良品种,保持相对稳定的粮食作物耕种面积,提高耕地利用效率。2)受边际效益递减规律的影响,化肥投入在粮食增产方面的能 力逐渐下降;施肥方法落后、偏施和过施现象普遍存在,盲目增加化 肥施用量并不能从根本上使粮食增产,关键是要提高化肥的利用率。3)我国现在农业机械化程度远远不能满足现代农业发展的需求, 要
7、实现农业现代化,必须在以下各方面积极稳妥地推进农业机械化的 发展:要把主要农产品生产过程机械化和产业化经营有机结合起来;对农业机械化进行结构性调整;因地制宜,有重点的推荐地区农业机械化;大力促进农业技术进步,重视农村的基础教育;建立与农业机械化相适应的农村经济体制。纵观中国农村现状,与其他产业相比,农业的发展一直处于较低 的状态。扩大耕作面积,提高单产,实现机械化、规模化生产是保证 我国农业健康发展的必有之路。【参考文献】1、庞皓,计量经济学,西南财经大学出版社,2014年6月第三版2、周四军,对我国粮食生产影响因素的计量分析,统计与决策,2003年3、赵慧江,基于回归分析的粮食产量影响因素分
8、析,怀化学院学报,2009年4、吕美巧、马广,农业机械化发展影响因素分析与评价,农机化研究,2008年5、李妍,中国粮食生产影响因素及地区差异分析,经济研究导刊,2009年附录Dependent Variable: X1 Method: Least SquaresDate: 12/22/15 Time: 09:24Sample: 1990 2013Included observations: 24VariableCoefficientStd. Error t-StatisticProb.C118379.68270.69614.313140.0000X2-3.5891343.927502-0.9
9、138470.3712X30.1022010.1559860.6551940.5195R-squared0.090190Mean dependent var108857.3Adjusted R-squared0.003541S.D. dependent var3944.710S.E. of regression3937.719Akaike info criterion19.51106Sum squared resid3.26E+08Schwarz criterion19.65832Log likelihood-231.1327Hannan-Quinn criter.19.55013F-stat
10、istic1.040870Durbin-Watson stat0.291206Prob(F-statistic)0.3706662Dependent Variable: X2 Method: Least SquaresDate: 12/22/15 Time: 09:14Sample: 1990 2013Included observations: 24VariableCoefficientStd. Error t-StatisticProb.C3217.3121300.5632.4737840.0220X1-0.0106560.011661-0.9138470.3712X30.0384110.
11、00186020.646100.0000R-squared0.956409Mean dependent var4360.633Adjusted R-squared0.952257S.D.dependent var981.9691S.E. of regression214.5609Akaike info criterion13.69153Sum squared resid966764.0Schwarz criterion13.83879Log likelihood-161.2984Hannan-Quinn criter.13.73060F-statistic230.3753Durbin-Wats
12、on stat0.212818Prob(F-statistic)0.000000Dependent Variable: X3 Method: Least SquaresDate: 12/22/15 Time: 09:15Sample: 1990 2013Included observations: 24VariableCoefficientStd. Error t-StatisticProb.C-69567.6734359.53-2.0246980.0558X10.1960100.2991630.6551940.5195X224.812071.20178020.646100.0000R-squ
13、ared0.955583Mean dependent var59965.75Adjusted R-squared0.951353S.D.dependent var24724.62S.E. of regression5453.262Akaike info criterion20.16228Sum squared resid6.24E+08Schwarz criterion20.30954Log likelihood-238.9474Hannan-Quinn criter.20.20135F-statistic225.8983Durbin-Watson stat0.198222Prob(F-sta
14、tistic)0.000000Dependent Variable: YMethod: Least SquaresDate: 12/22/15 Time: 16:20Sample: 1990 2013Included observations: 24VariableCoefficientStd. Error t-StatisticProb.CXI9080.9450.36962827337.040.3321850.2509701.4728000.74290.1550R-squaredAdjusted R-squaredS.E. of regression Sum squared resid Lo
15、g likelihood Durbin-Watson stat0.0897480.0483734747.8834.96E+08-236.18130.116875Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)49317.624867.06019.8484419.946612.1691400.1549695Dependent Variable: Y Method: Least SquaresDate: 12/22/15 Time:
16、16:27Sample: 1990 2013Included observations: 24VariableCoefficien Std. Error t-Statistic Prob.c31565.182691.44711.727960.0000X24.0710710.6027436.7542460.0000R-squared0.674652Mean dependent var49317.62Adjusted R-squared0.659863S.D. dependent var4867.060S.E. of regression2838.531Akaike info criterion1
17、8.81962Sum squared resid1.77E+08Schwarz criterion18.91779Log likelihood-223.8354F-statistic45.61984Durbin-Watson stat0.431896Prob(F-statistic)0.000001Dependent Variable: Y Method: Least SquaresDate: 12/22/15 Time: 16:39Sample: 1990 2013Included observations: 24VariableCoefficientStd. Errort-Statisti
18、cProb.C39569.811530.63325.851930.0000X30.1625560.0236706.8676950.0000R-squared0.681921Mean dependent var49317.62Adjusted R-squared0.667463S.D. dependent var4867.060S.E. of regression2806.640Akaike info criterion18.79702Sum squared resid1.73E+08Schwarz criterion18.89519Log likelihood-223.5642F-statis
19、tic47.16524Durbin-Watson stat0.487116Prob(F-statistic)0.0000017、Dependent Variable: Y Method: Least SquaresDate: 12/28/15 Time: 21:10Sample: 1990 2013Included observations: 24VariableCoefficientStd. Errort-StatisticProb.C-31636.647732.436-4.0914190.0005XI0.6410340.0693299.2462980.0000X30.1863250.011
20、06116.845050.0000R-squared0.937277Mean dependent var49317.62Adjusted R-squared0.931303S.D. dependent var4867.060S.E. of regression1275.661Akaike info criterion17.25679Sum squared resid34173555Schwarz criterion17.40404Log likelihood-204.0814F-statistic156.9019Durbin-Watson stat1.001388Prob(F-statisti
21、c)0.0000008、Dependent Variable: Y Method: Least SquaresDate: 12/28/15 Time: 21:11Sample: 1990 2013Included observations: 24VariableCoefficientStd. Error t-StatisticProb.CX2X336341.261.5875860.1009495989.4606.0675362.8442120.5581810.1129610.8936590.00000.58260.3816R-squaredAdjusted R-squaredS.E. of r
22、egression Sum squared resid Log likelihood Durbin-Watson stat0.6865710.6567212851.6111.71E+08-223.38750.471671Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)49317.624867.06018.8656219.0128823.000440.0000051993456491105093151.931817199444510
23、1095443317.9338021995466621100603593. 7361181996504541125483827. 9385471997494171129123980. 7420161998512301137874083. 7452081999508391131614124.3489962000462181084634146.4525742001452641060804253. 8551722002457061038914339. 457930200343070994104411.6603872004469471016064636. 66402820054840210427847
24、66. 2683982006498041049584927. 7725222007501601056385107.8765902008528711067935239821902009530821089865404. 4874962010546481098765561.7927802011571211105735704. 2977352012589581112055838. 81025602013601941119565911.9103907(二)模型设计为了具体分析各要素对我国粮食产量影响的大小,我们可以用 粮食总产量(y)作为衡量,代表粮食发展;用粮食耕种面积(xl)、 农用化肥施用量(x2
25、)以及农业机械总动力(x3) o运用这些数据进行 回归分析。采用的模型如下:y= 2xl+ B 3x2+ 8 4x3+Ui其中,y代表粮食总产量,xl代表粮食耕种面积,x2代表农用 化肥施用量,x3代表农业机械总动力,5代表随机扰动项。我们通过 对该模型的回归分析,得出各个变量与我国粮食产量的变动关系。三、模型估计和检验(一)模型初始估计(表二)Dependent Variable: YMethod: Least SquaresDate: 12/21/15 Time: 16:27Sample: 1990 2013Included observations: 24VariableCoeffici
26、entStd. Errort-StatisticProb.C-44644.146601.867-6.7623500.0000XI0.6841160.05311312.880430.0000X24.0429710.9747514.1476970.0005X30.0310320.0383520.8091310.4280R-squared0.966281Mean dependent var49317.62Adjusted R-squared0.961223S.D. dependent var4867.060S.E. of regression958.4155Akaike info criterion
27、16.71945Sum squared resid18371206Schwarz criterion16.91579Log likelihood-196.6334F-statistic191.0450Durbin-Watson stat1.534928Prob(F-statistic)0.000000回归函数为:y =-44644.14 + 0.684116, + 4.042971X9 +0.031032X3(6601.867)(0.053113)(0.974751)(0.038352 )T= (-6.762350)(12.88043)(4.147697)(0.809131)(二)多重共线性检
28、验,相关系数矩阵(表三)XIX2X3XI1-0.267566314901-0.23239867238X2-0.26756631490110.977074961235X3-0.232398672380.9770749612351根据多重共线性检验,解释变量之间可能存在着线性相关。为了进一步了解多重共线性的性质,我们可以做辅助回归。(表四)被解释变量可决系数R2的值方差扩大因子XI0.090191.09913X20.95640922. 9405X30.95558322.6398由上表可以得知,辅助回归的可决系数很高,经验表明,方差扩大因 子vnp二10时,通常说明该解释变量与其余解释变量之间有严重
29、的多 重共线性,这里的x2、x3的方差扩大因子远大于10,表明存在严重 的多重共线性问题。为了进一步筛选并剔除引起多重共线性分变量,需要采用逐步回归的 方法。分别作Y对XI、X2、X3的一元回归,意愿回归结果如下表(表五)变量XIX2X3参数估计值0.3696284.0710710.162556t统计量1.4728006.7542466.867695R20.0897480.6746520.681921R20.0483730.6598630.667463(表六)XIX2X3R2XI、X30.641034(9.246298)0.186325(16.84505)0.937277X2、X31.5875
30、86(0.558181)0.100949(0.893659)0.686571通过采用剔除变量法,多重共线性的修正结果如下:剔除X2O(表七)Dependent Variable: YMethod: Least SquaresDate: 12/25/15 Time: 10:06Sample: 1990 2013Included observations: 24VariableCoefficientStd. Errort-StatisticProb.C-31636.647732.436-4.0914190.0005XI0.6410340.0693299.2462980.0000X30.186325
31、0.01106116.845050.0000R-squared0.937277Mean dependent var49317.62Adjusted R-squared0.931303S.D. dependent var4867.060S.E. of regression1275.661Akaike info criterion17.25679Sum squared resid34173555Schwarz criterion17.40404Log likelihood-204.0814F-statistic156.9019Durbin-Watson stat1.001388Prob(F-sta
32、tistic)0.000000修正后方程为(7732.436)T= (-4.091419)(0.069329)(0.011061)(9.246298)(16.84505)(三)异方差检验(表八)ARCH Test:F-statistic0.037667Probability0.847978Obs*R-squared0.041181Probability0.839189Test Equation:Dependent Variable: RESIDA2Method: Least SquaresDate: 12/24/15 Time: 18:58Sample(adjusted): 1991 2013
33、Included observations: 23 after adjusting endpointsVariableCoefficientStd. Errort-StatisticProb.C1280357.504218.42.5392910.0191RESIDA2(-1)0.0415310.2139870.1940810.8480R-squared0.001790Mean dependent var1341173.Adjusted R-squared-0.045743S.D. dependent var1852594.S.E. of regression1894492.Akaike inf
34、o criterion31.82974Sum squared resid7.54E+13Schwarz criterion31.92848Log likelihood-364.0420F-statistic0.037667Durbin-Watson stat1.986528Prob(F-statistic)0.847978由上表可以得知,(n-p) R2=0. 041181,给定显著性水平为0.05, 查/分布表得临界值/ (p) =5.9915(n-p) R2,则接受原假设,表 明模型中的随机误差项不存在异方差。(四)自相关检验(表九)Dependent Variable: Y Method
35、: Least Squares Date: 12/25/15 Time: 10:06 Sample: 1990 2013Included observations: 24VariableCoefficientStd. Errort-StatisticProb.C-31636.647732.436-4.0914190.0005XI0.6410340.0693299.2462980.0000X30.1863250.01106116.845050.0000R-squared0.937277Mean dependent var49317.62Adjusted R-squared0.931303S.D.
36、 dependent var4867.060S.E. of regression1275.661Akaike info criterion17.25679Sum squared resid34173555Schwarz criterion17.40404Log likelihood-204.0814F-statistic156.9019Durbin-Watson stat1.001388Prob(F-statistic)0.000000(7732.436)T= (-4.091419)(0.069329)(0.011061)(9.246298)(16.84505)查DW表可知,dl=L 188,
37、 dl.546,模型中DWdl,显然有自相关。I Residual ActualFitt 引(表十)残差的变动有系统模式,连续为正和连续为负,表明残差项存在一阶 自相关。对模型进行BG检验,用Eviews分析结果如下:(表十一)Breusch-Godfrey Serial Correlation LM Test:F-statisticObs*R-squared2.6429945.223742ProbabilityProbability0.0971130.073397Test Equation:Dependent Variable: RESIDMethod: Least SquaresDate:
38、 12/24/15 Time: 19:24VariableCoefficientStd. Errort-StatisticProb.C1247.5647284.9980.1712510.8658XI-0.0114660.065346-0.1754620.8626X30.0001740.0102860.0169140.9867RESID(-l)0.5170860.2287092.2608930.0357RESID(-2)-0.1401580.230260-0.6086960.5499R-squared0.217656Mean dependent var -4.21 E-l2Adjusted R-
39、squared 0.052952 S.D. dependent var 1218.937S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat1186.22526735479-201.13591.906529Akaike info criterionSchwarz criterion17.1779917.42342F-statistic1.321497Prob(F-statistic)0.297918由上表显示LM=TRA2=5.223742,其p值为0.073397,表明存在自相关。对模型进行处理:对原模型
40、进行科克伦-奥克特迭代法做广义差分回归,用Eviews进行分析所得结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/24/15 Time: 19:38Sample(adjusted): 1991 2013Included observations: 23 after adjusting endpointsConvergence achieved after 10 iterationsVariableCoefficientStd. Errort-StatisticProb.C-39779.1510686.99-3.7222020.00
41、14XI0.7219490.0973507.4160450.0000X30.1791840.0184359.7199340.0000AR(1)0.4884590.1835412.6613060.0154R-squared0.956230Mean dependent var49521.70Adjusted R-squared0.949319S.D. dependent var4870.329S.E. of regression1096.434Akaike info criterion16.99428Sum squared resid22841163Schwarz criterion17.1917
42、6Log likelihood-191.4343F-statistic138.3617Durbin-Watson stat2.032169Prob(F-statistic)0.000000Inverted AR Roots.49(表十二)由图表知 DW=2. 032169 可以判断 du=1.543, dl=l. 168, duDW4-du,说明无自相关。AR =0.488459(10686.99)(0.097350)(0.018435)T= (-3.722202) (7.416045)(9.719934)(五)时间序列的平稳检验:(表十三)ADF Test Statistic -3.2302
43、771% Critical Value* -2.67565% Critical Value-1.957410% Critical Value-1.6238MacKinnon critical values for rejection of hypothesis of a unit root.Augmented Dickey-Fuller Test EquationDependent Variable: D(E)Method: Least SquaresDate: 12/24/15 Time: 19:47Sample(adjusted): 1992 2013Included observations: 22 after adjusting endpointsVariableCoefficientSt