2015年七年级上册数学导学案(全册).pdf

上传人:文*** 文档编号:93784139 上传时间:2023-07-11 格式:PDF 页数:123 大小:14.86MB
返回 下载 相关 举报
2015年七年级上册数学导学案(全册).pdf_第1页
第1页 / 共123页
2015年七年级上册数学导学案(全册).pdf_第2页
第2页 / 共123页
点击查看更多>>
资源描述

《2015年七年级上册数学导学案(全册).pdf》由会员分享,可在线阅读,更多相关《2015年七年级上册数学导学案(全册).pdf(123页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、七年级上册数学高效课堂导学案设计(全册)七年级数学(上册)导学案(全册)第一章有理数1.1正数和负数(1)【学习目标】1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。【导学指导】1、小学里学过哪些数请写出来:、O2、阅读课本P l和 P2三 幅 图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0 小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运 进 5 吨与运出3 吨;上升7 米与下降8 米;向东5 0 米与

2、向西4 7 米等都是生活中遇到的具有相反意义的量。请你也举一个具有相反意义量的例子:o(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、5 0;负的量用小学学过的数前面 放 上“一”(读作负)号来表示,如上面的一3、一8、47o(2)活动 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P3练习前的内容3、正数、负数的概念1)大于

3、0 的数叫做,小于。的数叫做。2)正 数 是 大 于0的 数,负数是 的 数,。既不是正数也不是负数。【课 堂 练 习】:L P 3第1题 到 第2题(课本上做)2.小明的姐姐在银行工作,她 把 存 入3万元记作+3万元,那 么 取 出2万元应记作,-4万兀表示。1 33.已知下列各数:一二,-2-,3.1 4,+3 0 6 5,0,-2 3 9;5 4则正数有;负数有。4 .下列结论中正确的是.()A.0既是正数,又是负数 B.O是最小的正数C.0是最大的负数 D.0既不是正数,也不是负数5 .给出下列各数:-3,0,+5,-3-,+3.1,-,2 0 0 4,+2 0 1 0;2 2其 中

4、 是 负 数 的 有.()A.2个 B.3个 C.4个 D.5个【要点归纳】:正数、负数的概念:(1)大 于。的数叫做,小 于。的数叫做 O(2)正 数 是 大 于0的数,负数是 的数,0既不是正数也不是负数。【拓 展 训 练】:1 .零 下1 5,表示为,比O 低4 的温度是 o2 .地 图 上 标 有 甲 地 海 拔 高 度3 0米,乙地海拔高度为2 0米,丙地海拔高度为-5米,其中最高处为 地,最低处为 地.3 .“甲比乙大-3岁”表示的意义是 o4 .如 果 海 平 面的高度为。米,一 潜 水 艇 在 海 水 下4。米处航行,一 条 鲨 鱼 在 潜 水 艇 上 方1 0米处游动,试用正

5、负数分别表示潜水艇和鲨鱼的高度。【总 结 反 思】:课题:L 1正数和负数(2)【学习目标】:1、会用正、负数表示具有相反意义的量;2、通过正、负数学习,培养学生应用数学知识的意识;【学习重点】:用正、负数表示具有相反意义的量;【学习难点】:实际问题中的数量关系;【导学指导】一、知识链接.通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用和 来分别表示它们。问题:“零”为什么即不是正数也不是负数呢?引导学生思考讨论,借助举例说明。参考例子:温度表示中的零上,零下和零度。二.自主探究问题:(课本第4页例题)先引导学生分析,再让学生独立完成例(1)一个月内,小

6、明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;2)2001年下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长。.2%,中国增长7.5%.写出这些国家2001年商品进出口总额的增长率;解:(1)这个月小明体重增长 小华体重增长,小强体重增长;2)六个国家2001年商品进出口总额的增长率:美国_ _ _ _ _ _ _ _ _ _ _ 德国_ _ _ _ _ _ _ _ _ _法国_ _ _ _ _ _ _ _ _ _ _ 英国_ _ _ _ _ _ _ _ _ _意大利 中国_ _

7、 _ _ _ _ _ _ _【课 堂 练 习】L课 本 第4页练习2、阅读思考(课 本 第8页)用正负数表示加工允许误差;问题:直径为30.032mm和 直 径 为29.97的零件是否合格?【要 点 归 纳】1、本节课你有那些收获?2、还有没解决的问题吗?【拓 展 训 练】1)甲冷库的温度是-12 C,乙冷库的温度比甲冷酷低5 C,则乙冷库的温度是;2)一种零件的内径尺寸在图纸上是9 0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?【总 结 反 思】:课题:1.2.1有理数【学习目标】:1、掌握有理数的概念,会对有理数按一定标准进

8、行分类,培养分类能力;2、了解分类的标准与集合的含义;3、体验分类是数学上常用的处理问题方法;【学习重点】:正确理解有理数的概念【学习难点】:正确理解分类的标准和按照一定标准分类【导学指导】一、温故知新1、通过两节课的学习,,那么你能写出3个不同类的数吗?.(4名学生板书)二、自主探究问 题1:观察黑板上的1 2个数,我们将这4位同学所写的数做一下分类;该分为几类,又该怎样分呢?先分组讨论交流,再写出来分为 类,分别是:_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _引

9、导归纳:统称为整数,统称为有理数。问题2:我们是否可以把上述数分为两类?如果可以,应分为哪两类?师生共同交流、归纳2、正数集合与负数集合所有的正数组成 集合,所有的负数组成 集合【课堂练习】1、P 8练 习(做在课本上)2.把下列各数填入它所属于的集合的圈内:正分数集合负分数集合【要点归纳】:有理数分类正 有 理 数,正整数正 分 数整 数,正 整 数零有 理 数 零或者有 理 数.负 整 数 负整数正 分 数负有理数分 数,负分数.负 分 数【拓展训练】1、下列说法中不正确的是.()A.-3.14既是负数,分 数,也是有理数B.。既不是正数,也不是负数,但是整数c.-2000既是负数,也是整

10、数,但不是有理数D.O 是正数和负数的分界2、在下表适当的空格里画上“M”号有理数整数分数正整数负分数自然数-8 是-2.25 是3三是。是【总结反思】:课题:1.2.2 数轴【学习目标】:1、掌握数轴概念,理解数轴上的点和有理数的对应关系;2、会正确地画出数轴,利用数轴上的点表示有理数;3、领会数形结合的重要思想方法;【重点难点】:数轴的概念与用数轴上的点表示有理数;【导学指导】一、知识链接1、观察下面的温度计,读 出 温 度.分 别 是 C、C、C;25201510502520151050-5101520252、在一条东西向的马路上,有一个汽车站,汽车站东3m 和 7.5m处分别有一棵柳树

11、和一棵杨树,汽车站西3m 和 4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境?东汽车站请同学们分小组讨论,交流合作,动手操作二、自主探究1、由上面的两个问题,你受到了什么启发?能用直线上的点来表示有理数吗?2、自己动手操作,看看可以表示有理数的直线必须满足什么条件?引导归纳:1)、画数轴需要三个条件,即、方向和 长度。2)数轴【课堂练习】1、请你画好一条数轴2、利用上面的数轴表示下列有理数9 21.5,2,2,2.5,0;2 33、写出数轴上点A,B,C,D,E所表示的数:E B A C D-3-2-1 O 1 2 3三、寻找规律1、观察上面数轴,哪些数在原点的左边,哪些数在原点的右

12、边,由此你有什么发现?2、每个数到原点的距离是多少?由此你又有什么发现?3、进一步引导学生完成P 9归纳【要点归纳】:画数轴需要三个条件是什么?【拓展练习】3 1 21、在数轴上,表示数-3,2.6,一 二,0,4彳,一2彳,-1的点中,在 原 点 左 边 的 点 有 个。5 3 3 2、在数轴上点A表示-4,如果把原点O向正方向移动1个单位,那么在新数轴上点A表示的数是()A.-5,B.-4 C.-3 D.-23、你觉得数轴上的点表示数的大小与点的位置有什么关系?【总结反思卜课题:1.2.3 相反数【学习目标】:1、掌握相反数的意义;2、掌握求一个已知数的相反数;3、体验数形结合思想;【学习

13、重点】:求一个已知数的相反数;【学习难点】:根据相反数的意义化简符号。【导学指导】一、温故知新1、数轴的三要素是什么?在下面画出一条数轴:2、在上面的数轴上描出表示5、一2、一5、+2 这四个数的点。3、观察上图并填空:数轴上与原点的距离是2 的点有 个,这 些 点 表 示 的 数 是;与原点的距离是5 的点有 个,这 些 点 表 示 的 数 是。从上面问题可以看出,一般地,如果a 是一个正数,那么数轴上与原点的距离是a 的点有两个,即一个表示a,另 一 个 是,它们分别在原点的左边和右边,我们说,这两点关于原点对称。二、自主学习自学课本第10、11的内容并填空:1、相反数的概念像 2 和一2

14、、5 和一5、3 和一3 这样,只有 不同的两个数叫做互为相反数。2、练习(1)、2.5 的 相 反 数 是 一,一 1(和 是互为相反数,的相反数是2010;(2)、a 和 互为相反数,也就是说,一a 是 的相反数例如a=7时,-a=-7,即 7 的相反数是一7.a=-5 时,一a=一(5),“一(一 5)”读 作“一5 的相反数“,而一5 的相反数是5,所以,一(5)=5你发现了吗,在一个数的前面添上一个“一”号,这个数就成了原数的(3)简化符号:一(+0.75)=,-(-68)=,(0.5)=,(+3.8)=;(4)、0 的相反数是.3、数轴上表示相反数的两个点和原点的距离。【课堂练习】

15、P11第 1、2、3 题【要点归纳】:1、本节课你有那些收获?2、还有没解决的问题吗?【拓展训练】1.在数轴上标出3,-1.5,。各数与它们的相反数。2.-1.6 的相反数是,2 x的相反数是,a-b的相反数是3.相 反 数 等 于 它 本 身 的 数 是,相反数大于它本身的数是4.填空:如 果 a=-1 3,那么一a=;(2)如果-a=-5.4,那么 a=;(3)如果一x=-6,那么 x=;(4)-x=9,那么 x=;5.数轴上表示互为相反数的两个数的点之间的距离为1 0,求这两个数。【总结反思】:课题:1.2.4 绝对值【学习目标】:1、理解、掌握绝对值概念.体会绝对值的作用与意义;2、掌

16、握求一个已知数的绝对值和有理数大小比较的方法;3、体验运用直观知识解决数学问题的成功;【重点难点】:绝对值的概念与两个负数的大小比较【导学指导】一、知识链接问题:如下图小红和小明从同一处O 出发,分别向东、西方向行走10米,他 们 行 走 的 路 线 (填相同或不相同),他们行走的距离(即路程远近)单位:米-10 0 10二、自主探究1、由上问题可以知道,10到 原 点 的 距 离 是,-1 0 到原点的距离也是一到原点的距离等于10的数有 个,它们的关系是一对。这时我们就说10的绝对值是1。,10的绝对值也是10;例如,一3.8 的绝对值是3.8;17的绝对值是17;6:的绝对值是一般地,数

17、轴上表示数a 的点与原点的距离叫做数a 的绝对值,记 作 I a I。2、练习(1)、式 子 I-5.7|表示的意义是。(2)、2 的绝对值表示它离开原点的距离是 个单位,记作;3、思考、交流、归纳由绝对值的定义可知:一 个 正 数 的 绝 对 值 是;一个负数的绝对值是它的0 的绝对值是。用式子表示就是:1)、当 a 是 正 数(即 a0)时,Ia|=;2)、当 a 是 负 数(即 a O B.a O C.a O D.a 3,则,一3|=,|3-a|=.4 .绝对值等于其相反数的数一定是.()A.负数 B.正数 C.负数或零 D,正数或零5 .给出下列说法:互为相反数的两个数绝对值相等;绝对

18、值等于本身的数只有正数;不相等的两个数绝对值不相等;绝对值相等的两数一定相等.其中正确的有.()A.0个 B.1个 C.2个 D.3个【总 结 反 思】:课题:1.3.1有理数的加法(1)【学习目标】:1、理解有理数加法意义,掌握有理数加法法则,会正确进行有理数加法运算;2、会利用有理数加法运算解决简单的实际问题;【学习重点】:有理数加法法则【学习难点】:异号两数相加【导学指导】一、知识链接1、正有理数及。的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。如果,红队进4个球,失2个球;蓝队进

19、1个球,失1个球。于是红队的净胜球数为 4+(-2),蓝队的净胜球数为 1+(-l)o这里用到正数和负数的加法。那么,怎样计算4+(-2)下面我们一起借助数轴来讨论有理数的加法。二、自主探究1、借助数轴来讨论有理数的加法1)如果规定向东为正,向西为负,那么一个人向东走4米,再向东走2米,两次共向东走了 米,这个问题用算式表示就是:.卜 一土 2 H-1 o 1 2 3 4 5 6 7,2)如果规定向东为正,向西为负,那么一个人向西走2米,再向西走4米,两次共向西走多少米?很明显,两次共向西走了 米。这个问题用算式表示就是:如图所示:3)如果向西走2米,再向东走4米,那么两次运动后,这个人从起点

20、向东走了 米,写成算式就是 这个问题用数轴表示如下图所示:4)利用数轴,求以下情况时这个人两次运动的结果:先向东走3米,再向西走5米,先向东走5米,再向西走5米,先向西走5米,再向东走5米,写出这三种情况运动结果的算式这个人从起点向()走 了()米;这个人从起点向()走 了()米;这个人从起点向()走 了()米。5)如果这个人第一秒向东(或向西)走5米,第二秒原地不动,两秒后这个人从起点向东(或向西)运动了一米。写成算式就是2、师生归纳两个有理数相加的几种情况。3.你能从以上几个算式中发现有理数加法的运算法则吗?有理数加法法则(1)同号的两数相加,取 的符号,并把 相加。(2)绝对值不相等的异

21、号两数相加,取 的加数的符号,并用较大的绝对值 较小 的 绝 对 值.互 为 相 反 数 的 两 个 数 相 加 得;(3)一个数同0相加,仍得。4.新知应用例1 计算(自己动动手吧!)(1)(-3)+(-9);(2)(-4.7)+3.9.例2(自己独立完成)【课堂练习】:1.填空:(口答)(1)(-4)+(-6)=;(2)3+(-8)=(4)7+(-7)=;(4)(-9)+1=;(5)(-6)+0 =;(6)0+(-3)=:2.课本P 18第1、2题【要点归纳卜有理数加法法则:【拓展训练】:1.判断题:(1)两个负数的和一定是负数;(2)绝对值相等的两个数的和等于零;(3)若两个有理数相加时

22、的和为负数,这两个有理数一定都是负数;(4)若两个有理数相加时的和为正数,这两个有理数一定都是正数。2.已知|a|=8,|b|=2;(1)当a、b同号时,求a+万的值;(2)当a、b异号时,求a+b的值。【总结反思卜课题:1.3.1有理数的加法(2)【学习目标】:掌握加法运算律并能运用加法运算律简化运算;【重点难点】:灵活运用加法运算律简化运算;【导学指导】一、温故知新1、想一想,小学里我们学过的加法运算定律有哪些?先说说,再用字母表示写在下面:、_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _2、计算(1)3

23、0 +(-2 0)=8+(-5)+(-4)=(-2 0)+3 0=8+(-5)+(-4)=思考:观察上面的式子与计算结果,你有什么发现?二、自主探究1、请说说你发现的规律2、自己换几个数字验证一下,还有上面的规律吗3、由上可以知道,小学学习的加法交换律、结合律在有理数范围内同样适应,即:两个数相加,交换加数的位置,和.式 子 表 示 为三个数相加,先把前两个数相加,或者先把后两个数相加,和用式子表示为_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _想想看,式子中的字母可以是哪些数?_ _ _ _ _ _ _ _ _ _ _ _ _ _

24、_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _例 1 计算:1)1 6 +(-2 5)+2 4+(-3 5)2)(2.48)+(+4.3 3)+(7.52)+(4.3 3)例2每袋小麦的标准重量为9 0千克,1 0袋小麦称重记录如下:91 91 91.5 89 91.2 91.3 88.7 88.8 91.8 91.11 0袋小麦总计超过多少千克或不足多少千克?1 0袋小麦的总重量是多少千克?想一想,你会怎样计算,再把自己的想法与同伴交流一下。【课堂练习】课本P 2 0页 练 习1、2【要点归纳】:你会用加法交换律、结合律简化运算了吗?【拓展训练】1.计

25、算:(-7)+1 1 +3 +(-2);%(一2+T)+(f2 .绝 对值不大于1 0的整数有 个,它们的和是3、填空:(1)若 a 0,b 09那么a+b_ _ _ _ _ 0.若 a 0,Z?0,Z?1 b|那么 a+b _(4)若 a 0,且 1 a 1|切 那 么a+b _3.某储蓄所在某日内做了 7件工作,取出950元,存 入50 0 0元,取出80 0元,存 入1 2 0 0 0元,取 出1 0 0 0 0元,取出2 0 0 0元.问这个储蓄所这一天,共增加多少元?4、课 本P 2 0实验与探究【总结反思】:课题:1.3.2有理数的减法(1)【学习目标】:1、经历探索有理数减法法则

26、的过程.理解并掌握有理数减法法则;2、会正确进行有理数减法运算;3、体验把减法转化为加法的转化思想;【重点难点】:有理数减法法则和运算【导学指导】一、知识链接1、世界上最高的山峰珠穆郎玛峰海拔高度约是8844米,吐鲁番盆地的海拔高度约为一 154米,两处的高度相差多少呢?试试看,计算的算式应该是.能算出来吗,画草图试试2、长春某天的气温是一2 C3 C,这一天的温差是多少呢?(温差是最高气温减最低气温,单位:。C)显然,这天的温差是3一(2);想想看,温差到底是多少呢?那么,3-(-2)=;二、自主探究1、还记得吗,被减数、减数差之间的关系是:被减数一减数=;差+减数=O2、请你与同桌伙伴一起

27、探究、交流:要计算3(-2)=?,实际上也就是要求:?+(-2)=3,所 以 这 个 数(差)应 该 是;也就是3(2)=5;再看看,3+2=;所以 3(-2)3+2;由上你有什么发现?请写出来.3、换两个式子计算一下,看看上面的结论还成立吗?-1-(-3)=,-1+3=,所以一 1一(3)-1+3;0(3)=,0+3=,所以 0(3)_0+3;4、师生归纳1)法则:_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _2)字母表示:_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

28、 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _三、新知应用1、例题例1 计算:(1)(-3)(5);(2)0-7;(3)7.2(4.8);(4)3 5一;2 4请同学们先尝试解决【课 堂 练 习】课 本P 2 3 1.2【要点归纳卜有理数减法法则:【拓 展 训 练】1、计 算:(1)(-3 7)-(-4 7);(2)(-5 3)-1 6;(3)(-2 1 0)-8 7;(4)1.3-(-2.7);3 1(一2:)-(-1-);4 22.分别求出数轴上下列两点间的距离:(1)表 示 数8的 点 与 表 示 数3的点;(2)表示数一2的点与表示数一3的点;【总结反思】:课题:

29、1.3.2有理数的减法(2)【学习目标】:1、理解加减法统一成加法运算的意义;2、会将有理数的加减混合运算转化为有理数的加法运算;【重点难点】:有理数加减法统一成加法运算;【导学指导】一、知识链接1、一架飞机作特技表演,起飞后的高度变化如下表:高度的变化上升4.5千米下降3.2千米上 升1.1千米下 降1.4千米记作+4.5千米3.2千米+1.1千米一1.4千米请你们想一想,并和同伴一起交流,算算此时飞机比起飞点高了 千米。2、你是怎么算出来的,方法是_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _二、自主探究1、现在我

30、们来研究(一2 0)+(+3)-(5)-(+7),该怎么计算呢?还是先自己独立动动手吧!2、怎么样,计算出来了吗,是怎样计算的,与同伴交流交流,师巡视指导。3、师生共同归纳:遇到一个式子既有加法,又有减法,第 一 步 应 该 先 把 减 法 转 化 为.再 把加号记在脑子里,省略不写如:(-2 0)+(+3)-(-5=(-2 0)+(+3)+(+5)=-2 0+3+5-7可以读作:负2 0、正3、正5、4、师生完整写出解题过程5、补充例题:计算-4.4-(-)-(+7)有加法也有减法+(-7)先把减法转化为加法再把加号记在脑子里,省略不写负7的_”或 者 负2 0加3加5减7”.1 1 74-

31、)-(+2)+(-2 )+1 2.4;【课堂练习】计算:(课本P24练习)(1)14+30.5;(2)-2.4+3.54.6+3.5;(3)(一7)(+5)+(4)(10);3 7 1 2(4)+()-()-1;4 2 6 3【要点归纳卜【拓展训练卜1、计算:2 4 51)2718+(7)32 2)(+-)+(一一)-(+-)-(+1)7 9 9【总 结 反 思】:课题:1.4.1有理数的乘法(1)【学 习 目 标】:1、理解有理数的运算法则;能根据有理数乘法运算法则进行有理的简单运算;2、经历探索有理数乘法法则过程,发展观察、归纳、猜想、验 证 能 力;【重 点 难 点】:有理数乘法法则【导

32、 学 指 导】一、温故知新1.有理数加法法则内容是什么?2.计算(1)2+2+2=(2)(-2)+(-2)+(-2)=3.你能将上面两个算式写成乘法算式吗?二、自主探究1、自学 课 本28-29页回答下列问题(1)如 果 它 以 每 分2cm的速度向右爬行,3分钟后它在什么位置?可以表示为.(2)如 果 它 以 每 分2cm的速度向左爬行,3分钟后它在什么位置?可以表示为_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _(3)如 果 它 以 每 分2cm的速度向右爬行,3分钟前它在什么位置?可以表示为_ _ _ _ _ _ _

33、 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _(4)如果 它 以 每 分2cm的速度向左爬行,3分钟前它在什么位置?可以表示为_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _由上可知:(1)2X3=;(2)(-2)X3=;(3)(+2)X(-3)=;(4)(-2)X(-3)=(5)两个数相乘,一个 数 是。时,结 果 为0观察上面的式子,你有什么发现?能说出有理数乘法法则吗?归纳有理数乘法法则两数相乘,同号,异号,并把 相 乘。任 何 数 与0相 乘,都得 o2、直接说出下列两数相乘所得积的符号1)5 X (-3);3)(-7)X (-9

34、);2)(4)X 64)0.9 X 8 ;3、请同学们自己完成例 1 计算:(1)(-3)X 9;(2)(-)X (-2);2归纳:的两个数互为倒数。【课堂练习】课 本3 0页 练 习1.2.3 (直接做在课本上)【要点归纳】:有理数乘法法则:【拓展训练】1.如果a b 0,a+b 0,确 定a、b的正负。2.对于有理数a、b定义一种运算:a*b=2 a-b,计 算(-2)*3+1【总结反思卜课题:1.4.1有理数的乘法(2)【学习目标】:1、经历探索多个有理数相乘的符号确定法则;2、会进行有理数的乘法运算;3、通过对问题的探索,培养观察、分析和概括的能力;【学习重点】:多个有理数乘法运算符号

35、的确定;【学习难点】:正确进行多个有理数的乘法运算;【导学指导】一、温故知新1、有理数乘法法则:二、自主探究1、观察:下列各式的积是正的还是负的?2X 3X 4X (-5),2X 3X (-4)X(-5),2X(-3)X(-4)X(-5),(2)X(3)X(4)X(5);思考:几个不是。的数相乘,积的符号与负因数的个数之间有什么关系?分组讨论交流,再用自己的语言表达所发现的规律:几个不是。的数相乘,负因数的个数是 时,积是正数;负因数的个数是 时,积是负数。2、新知应用1、例 题 3,(P31页)请你思考,多个不是。的数相乘,先做哪一步,再做哪一步?你能看出下列式子的结果吗?如果能,理由_ _

36、 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _7.8 x(-8.1)x O x (-19.6)师生小结:_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _【课堂练习】计算:(课 本 P32练习)5 8?(1)、5 X 8 X(7)X(0.25);(2)、(-)x XX();12 15 2 35 8 3 2(3)(-l)x(-)x-x-x(-)x O x(-l)

37、;【要点归纳卜1.几个不是。的数相乘,负因数的个数是 时,积是正数;负因数的个数是 时,积是负数。2.几个数相乘,如果其中有一个因数为0,积 等 于0;【拓 展 训 练】:一、选择L若 干 个 不 等 于0的有理数相乘,积的符号()A.由因数的个数决定 B.由正因数的个数决定C.由负因数的个数决定 D.由负因数和正因数个数的差为决定2.下列运算结果为负值的是()A.(-7)X(-6)B.(-6)+(-4)C.OX(-2)(-3)D.(-7)-(-15)3.下列运算错误的是()A.(-2)X(-3)=6 B.(一;1x(6)=-3C.(-5)X(-2)X(-4)=-40 D.(-3)X(-2)X

38、(-4)=-24二、计 算:【总 结 反 思】:L 4.1课题:有理数的乘法(3)【学习目标】:1、熟练有理数的乘法运算并能用乘法运算律简化运算;2、学生通过观察、思考、探究、讨论,主动地进行学习;【学习重点】:正确运用运算律,使运算简化【学习难点】:运用运算律,使运算简化【导学指导】一、知识链接1、请同学们计算.并比较它们的结果:(1)(-6)X5=5X(-6)=(2)3X(-4)X(-5)=3X(-4)X(-5)=请以小组为单位,相互检查,看计算对了吗?二、自主探究1、下面我们以小组为单位,仔细观察上面的式子与结果,把你的发现相互交流交流。2、怎么样,在有理数运算律中,乘法的交换律,结合律

39、以及分配律还成立吗?3、归纳、总结乘法交换律:两个数相乘,交换因数的位置,积。即:ab=乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积即:(ab)c=4、新知应用例 题4用两种方法计算 X12;解法一:解法二:【课 堂 练 习】:(课 本P3 3练习)1、(-85)X (-2 5)X (-4);7 12、(-)X 1 5 X (1 );8 79 13、(-)X 3 0;1 0 1 5【要 点 归 纳】:【拓 展 训 练】:1、看谁算得快,算得准4 5(1)(一7)X ()X ;3 1 4(2)9 X 1 8;1 8(3)-9 X (-1 1)+1 2 X (-9);(4)2

40、55 3-+-6 43x 3 6 ;【总 结 反 思】:课题:1.4.2有理数的除法(1)【学 习 目 标】:1、理解除法是乘法的逆运算;2、理 解 倒数概念,会求有理数的倒数;3、掌握除法法则,会进行有理数的除法运算;【重 点 难 点 卜 有 理 数 的 除 法 法 则【导 学 指 导】一、知识链接1)、小红从家里到学校,每 分 钟 走5 0米,共走了 2 0分钟。问小红家离学校有 米,列出的算式为。2)放 学 时,小 红 仍 然 以 每 分 钟5 0米的速度回家,应该走 分钟。列出的算式为_从上面这个例子你可以发现,有理数除法与乘法之间的关系是3)写出下列各数的倒数-4的倒数,3的倒数,-

41、2的倒数;二、合作交流、探究新知1、小组合作完成比较大小:8+(-4)_ 8 X (一:);-4(1 5)4-3 (1 5)X ;-3(一!)+(2)(1 -y )X (一);4 4 2再相互交流、并与小学里学习的乘除方法进行类比与对比,归纳有理数的除法法则:1)、除 以 一 个 不 等 于0的数,等于;2)、两数相除,同号得,异号得,并 把 绝 对 值 相,0除以任何一个不等于0的数,都得;1.自 学P3 4例5、例62.师 生 共 同 完 成 例7【课堂练习】1、练习:P352、练习:P36第1、2题【要点归纳】:有理数的除法法则:【拓展训练】1、计算(1)圜+闾 0+(-1000);(3

42、 i3 7 5+H H 42、练习册P21(-)【总结反思卜课题:1.4.2有理数的除法(2)【学 习 目 标】:1、学会用计算器进行有理数的除法运算;2、掌握有理数的混合运算顺序;【学 习重 点】:有理数的混合运算;【学 习 难 点】:运算顺序的确定与性质符号的处理;【导 学 指 导】一、知识链接1、计 算(1)(-8)+(-4);(-9)4-3 ;(3)(0.1)4 X (1 0 0);22.有 理 数 的 除 法 法 则:二、自主探究1 例8计算(1)(8)+4 4-(-2)(2)(-7)X (-5)9 0+(-1 5)你的计算方法是先算 法,再算 法。有理数加减乘除的混合运算顺序应该是

43、写出解答过程2.自学完成例9 (阅 读 课 本P3 6 P3 7页内容)【课 堂 练 习】1、计 算(P3 6练习)(1)6 (一1 2)+(一3);(3)(4 8)4-8(2 5)X (6);2.P3 7练习(2)3 X (4)+(2 8)4-7;(4)42x十 (-0.25);【要 点 归 纳】:【拓 展 训 练】1、选择题(1)下列运算有错误的是()A.4-(-3)=3 X (-3)C.8-(-2)=8+2B.(-5)一(2)下列运算正确的是(D.2-7=(+2)+(-7).3(4、B.0-2=-2;C.X-|=4 3)D.(-2)(-4)=2;2、计算1)、1 86-r (2)X2)1

44、 1+(2 2)3 X (1 1);【总 结 反 思】:课题:1.5.1有理数的乘方(1)【学 习 目 标】:1、理解有理数乘方的意义;2、掌握有理数乘方运算;3、经历探索有理数乘方的运算,获得解决问题经验;【重 点 难 点】:有理数乘方的运算。【导 学 指 导】一、知识链接1、看 下面的故事:从 前,有 个“聪明的乞丐”他要到了一块面包。他 想,天天要饭太辛苦,如果我第一天吃这块面包的一半,第二天再吃剩余面包的一半,依次每天都吃前一天剩余面包的一半,这 样 下 去,我就永远不要去要饭了!请你们交流讨论,再 算 一 算,如 果把整块面包看成整体“1”,那第十天他将吃到面包。2、拉面馆的师傅用一

45、根很粗的面条,把两头捏合在一起拉伸,再捏合,再 拉 伸,反复多次,就能把这根很粗的面条,拉成许多很细的面条.想想看,捏合 次 后,就 可 以 拉 出3 2根面条.二、合作探究1、分 小 组 合 作 学 习P 4 1页 内 容,然后再完成好下面的问题1)叫乘方,叫做嘉,在 式 子a。中,a叫做,n叫做2)式 子a”表示的意义是_3)从 运 算上看式子a 可以读作,从结果上看式子a j可以读作;2、新知应用1、将 下 列 各 式 写 成 乘 方(即 幕)的 形 式:(1)(-2)X (-2)X (-2)X (-2)=、(T)x(4)x(4 *T=(3)x*X*X.%(2 0 1 0 个)=2、例题

46、,P 4 1例1师生共同完成从例题1可以得出:负数的奇次塞是 数,负数的偶次籍是 数,正数的任何次幕都是 数,。的任何正整次幕都是3、思考:(-2)4和2,意义一样吗?为什么?4、自学例2 (教师指导)【课堂练习】完成P 4 2页1,2.【要点归纳】:【拓展训练】1、我们已经学习了五种运算,请把下表补充完整:运算加减乘除乘方运算结果和2、用乘方的意义计算下列各式:(1)24;22T3.计算(1)(-2)2-22-X(-10)2;(2)f-2 1 j x(-0.5)3x(-2)2x(-8);【总 结 反 思】:课题:1.5.1有理数的乘方(2)【学 习 目 标】:1、能确定有理数加、减、乘、除、

47、乘方混合运算的顺序;2、会进行有理数的混合运算;3、培养并提高正确迅速的运算能力;【学 习 重 点 卜 运 算 顺 序 的 确 定 和 性 质 符 号 的 处 理;【学 习 难 点】:有理数的混合运算;【导 学 指 导】一、知识链接1、在2+3?X (-6)这个式子中,存在着 种运算。2、请 你 们 以4人一个小组讨论、交 流,上 面 这 个 式 子 应 该 先 算、再算、最后算 o二、合作探究1、由上可以知道,在有理数的混合运算中,运算顺序是:(1);(2);(3);2、P 4 3例 题3,请你试练3、师生 共 同 探 讨P 4 3例 题4【课 堂 练 习】P 4 4练习计算:、(1)1 0

48、X2+(2)*1 2 34-4;(2)、(-5)33 X(3)、11一X53 5x+一;11 4(4)、(-1 0)4+(-4)2-(3+32)X 2;【要 点 归 纳】:有理数的混合运算的运算顺序是:【拓 展 训 练】计算【总 结 反 思】:课题:1.5.2科学记数法【学 习 目 标】:1.能 将 一 个 有 理 数 用 科 学 记 数 法 表 示;2.已 知 用 科 学 记 数 法 表 示 的 数,写 出 原 来 的 数;3.懂 得 用 科 学 记 数 法 表 示 数 的 好 处;【重 点 难 点】:用 科 学 记 数 法 表 示 较 大 的 数【导 学 指 导】一、知 识 链 接1、根

49、据 乘 方 的 意 义,填 写 下 表:10的 乘 方表 示 的 意 义运 算 结果结 果 中 的0的 个 数10210X 101002103104105二、自 主 学 习1.我 们 知 道:光 的 速 度 约 为:300000000米/秒,地 球 表 面 积 约为:510000000000000平 方 米。这 些 数 非 常 大,写 起 来 表 较 麻 烦,能 否 用 一 个 比 较 简 单的 方 法 来 表 示 这 两 个 数 吗?300 000 000=5100 000 000 000=定 义:把 一 个 大 于 1 0 的 数 表 示 成 a x i o n 的 形 式(其 中 a _

50、n 是_ _ _ _ _ _ _ _ _ _ _ _ _ _)叫 做 科 学 记 数 法。2 例 5.用 科 学 记 数 法 表 示 下 列 各 数:(1)1 000 000=(2)57 000 000=(3)1 23 000 000 000=(4)8 0 0 8 0 0 =(5)-10000=(6)-12030000=归 纳:用 科 学 记 数 法 表 示 一 个 n 位 整 数 时,1 0 的指数比原来的整数位【课 堂 练 习】1.课 本 4 5 页 练 习 1、2 题2 .写 出 下 列 用 科 学 记 数 法 表 示 的 原 数:(1)8.848X 103=(2)3.021 X 102

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁