《初中二元一次方程数学教案最新范文模板【优秀10篇】.docx》由会员分享,可在线阅读,更多相关《初中二元一次方程数学教案最新范文模板【优秀10篇】.docx(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中二元一次方程数学教案最新范文模板【优秀10篇】元一次方程教学设计 篇一 一、教学目标 (一)教学知识点 1、代入消元法解二元一次方程组。 2、解二元一次方程组时的消元思想,化未知为已知的化归思想。 (二)能力训练要求 1、会用代入消元法解二元一次方程组。 2、了解解二元一次方程组的消元思想,初步体会数学研究中化未知为已知的化归思想。 (三)情感与价值观要求 1、在学生了解二元一次方程组的消元思想,从而初步理解化未知为已知和化复杂问题为简单问题的化归思想中,享受学习数学的乐趣,提高学习数学的信心。 2、培养学生合作交流,自主探索的良好习惯。 二、教学重点 1、会用代入消元法解二元一次方程组。
2、 2、了解解二元一次方程组的消元思想,初步体现数学研究中化未知为已知的化归思想。 三、教学难点 1、消元的思想。 2、化未知为已知的化归思想。 四、教学方法 启发自主探索相结合。 教师引导学生回忆一元一次方程解决实际问题的方法并从中启发学生如果能将二元一次方程组转化为一元一次方程。二元一次方程便可获解,从而通过学生自主探索总结用代入消元法解二元一次方程组的步骤。 五、教具准备 投影片两张: 第一张:例题(记作7。2 A); 第二张:问题串(记作7。2 B)。 六、教学过程 、提出疑问,引入新课 师生共忆上节课我们讨论过一个希望工程义演的问题;没去观看义演的成人有x个,儿童有y个,我们得到了方程
3、组 成人和儿童到底去了多少人呢? 生在上一节课的做一做中,我们通过检验 是不是方程x+y=8和方程5x+3y=34,得知这个解既是x+y=8的解,也是5x+3y=34的解,根据二元一次方程组解的定义得出 是方程组 的解。所以成人和儿童分别去了5个人和3个人。 师但是,这个解是试出来的。我们知道二元一次方程的解有无数个。难道我们每个方程组的解都去这样试? 生太麻烦啦。 生不可能。 师这就需要我们学习二元一次方程组的解法。 、讲授新课 师在七年级第一学期我们学过一元一次方程,也曾碰到过希望工程义演问题,当时是如何解的呢? 生解:设成人去了x个,儿童去了(8x)个,根据题意,得: 5x+3(8x)=
4、34 解得x=5 将x=5代入8x=85=3 答:成人去了5个,儿童去了3个。 师同学们可以比较一下:列二元一次方程组和列一元一次方程设未知数有何不同?列出的方程和方程组又有何联系?对你解二元一次方程组有何启示? 生列二元一次方程组设出有两个未知数成人去了x个,儿童去了y个。列一元一次方程设成人去了x个,儿童去了(8x)个。y应该等于(8x)。而由二元一次方程组的一个方程x+y=8根据等式的性质可以推出y=8x。 生我还发现一元一次方程中5x+3(8x)=34与方程组中的第二个方程5x+3y=34相比较,把5x+3y=34中的y用8x代替就转化成了一元一次方程。 师太好了。我们发现了新旧知识之
5、间的联系,便可寻求到解决新问题的方法即将新知识转化为旧知识便可。如何转化呢? 生上一节课我们就已知道方程组的两个未知数所包含的意义是相同的。所以将 中的变形,得y=8x 我们把y=8x代入方程,即将中的y用8x代替,这样就有5x+3(8x)=34。二元化成一元。 元一次方程教学设计 篇二 教学目标 1使学生会用代入消元法解二元一次方程组; 2理解代入消元法的基本思想体现的“化未知为已知”,“变陌生为熟悉”的化归思想方法; 3在本节课的教学过程中,逐步渗透朴素的辩证唯物主义思想。 教学重点和难点 重点:用代入法解二元一次方程组。 难点:代入消元法的基本思想。 课堂教学过程设计 一、从学生原有的认
6、知结构提出问题 1谁能造一个二元一次方程组?为什么你造的方程组是二元一次方程组? 2谁能知道上述方程组(指学生提出的方程组)的解是什么?什么叫二元一次方程组的解? 3上节课我们提出了鸡兔同笼问题:(投影)一个农民有若干只鸡和兔子,它们共有50个头和140只脚,问鸡和兔子各有多少?设农民有x只鸡,y只兔,则得到二元一次方程组 对于列出的这个二元一次方程组,我们如何求出它的解呢?(学生思考)教师引导并提出问题:若设有x只鸡,则兔子就有(50-x)只,依题意,得2x+4(50-x)= 140从而可解得,x=30,50-x=20,使问题得解。 问题:从上面一元一次方程解法过程中,你能得出二元一次方程组
7、串问题,进一步引导学生找出它的解法) (1)在一元一次方程解法中,列方程时所用的等量关系是什么? (2)该等量关系中,鸡数与兔子数的表达式分别含有几个未知数? (3)前述方程组中方程所表示的等量关系与用一元一次方程表示的等量关系是否相同? (4)能否由方程组中的方程求解该问题呢? (5)怎样使方程中含有的两个未知数变为只含有一个未知数呢?(以上问题,要求学生独立思考,想出消元的方法)结合学生的回答,教师作出讲解。 由方程可得y=50-x,即兔子数y用鸡数x的代数式50-x表示,由于方程中的y与方程中的y都表示兔子的只数,故可以把方程中的y用(50-x)来代换,即把方程代入方程中,得2x+4(5
8、0-x)=140,解得x=30。 将x=30代入方程,得y=20。 即鸡有30只,兔有20只。 本节课,我们来学习二元一次方程组的解法。 二、讲授新课例1解方程组 分析:若此方程组有解,则这两个方程中同一个未知数就应取相同的值。因此,方程中的y就可用方程中的表示y的代数式来代替。解:把代入,得3x+2(1-x)=5,3x+2-2x=5,所以x=3。把x=3代入,得y=-2。 (本题应以教师讲解为主,并板书,同时教师在最后应提醒学生,与解一元一次方程一样,要判断运算的结果是否正确,需检验。其方法是将所求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是否相等。检验可以口算
9、,也可以在草稿纸上验算)教师讲解完例1后,结合板书,就本题解法及步骤提出以下问题: 1方程代入哪一个方程?其目的是什么? 2为什么能代入? 3只求出一个未知数的值,方程组解完了吗? 4把已求出的未知数的值,代入哪个方程来求另一个未知数的值较简便?在学生回答完上述问题的基础上,教师指出:这种通过代入消去一个未知数,使二元方程转化为一元方程,从而方程组得以求解的方法叫做代入消元法,简称代入法。例2解方程组 分析:例1是用y=1-x直接代入的。例2的两个方程都不具备这样的条件(即用含有一个未知数的代数式表示另一个未知数),所以不能直接代入。为此,我们需要想办法创造条件,把一个方程变形为用含x的代数式
10、表示y(或含y的代数式表示x)。那么选用哪个方程变形较简便呢?通过观察,发现方程中x的系数为1,因此,可先将方程变形,用含有y的代数式表示x,再代入方程求解。解:由,得x=8-3y,把代入,得(问:能否代入中?) 2(8-3y)+5y=-21,-y=-37,所以y=37。 (问:本题解完了吗?把y=37代入哪个方程求x较简单?)把y=37代入,得x= 8-337,所以x=-103。 (本题可由一名学生口述,教师板书完成) 三、课堂练习(投影)用代入法解下列方程组: 四、师生共同小结 在与学生共同回顾了本节课所学内容的基础上,教师着重指出,因为方程组在有解的前提下,两个方程中同一个未知数所表示的
11、是同一个数值,故可以用它的等量代换,即使“代入”成为可能。而代入的目的就是为了消元,使二元方程转化为一元方程,从而使问题最终得到解决。 元一次方程教学设计 篇三 一、教学目标 1、通过与一元一次方程的比较,能说出二元一次方程的概念,并会辨别一个方程是不是二元一次方程; 2、通过探索交流,会辨别一个解是不是二元一次方程的解,能写出给定的二元一次方程的解,了解方程解的不唯一性; 3、会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。 过程与方法目标:经历观察、比较、猜想、验证等数学学习活动,培养分析问题的能力和数学说理能力; 情感与态度目标 1、通过与一元一次方程的类比,探
12、究二元一次方程及其解的概念,进一步培养运用类比转化的思想解决问题的能力; 2、通过对实际问题的分析,培养关注生活,进一步体会方程是刻画现实世界的有效数学模型,培养良好的数学应用意识。 二、重点、难点 重点:二元一次方程的概念及二元一次方程的解的概念。 难点 1、了解二元一次方程的解的不唯一性和相关性。即了解二元一次方程的解有无数个,但不是任意的两个数是它的解。 2、把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。 三、教学方法与教学手段 1、 通过创设问题情境,让学生在寻求问题解决的过程中认识二元一次方程,了解二元一次方程的特点,体会到
13、二元一次方程的引入是解决实际问题的需要。 2、 通过观察、思考、交流等活动,激发学习情绪,营造学习气氛,给学生一定的时间和空间,自主探讨,了解二元一次方程的解的不唯一性和相关性。 3、 通过学练结合,以游戏的形式让学生及时巩固所学知识。 四、教学过程 创设情境 导入新课 1、一个数的3倍比这个数大6,这个数是多少? 2、写有数字5的黄卡和写有数字2的蓝卡若干张,问黄卡和蓝卡各取几张,才能使取到的卡片上的数字之和为22? 思考:这个问题中,有几个未知数?能列一元一次方程求解吗?如果设黄卡取x张,蓝卡取y张,你能列出方程吗? 3、在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20
14、千米。如果设轿车的速度是a千米/时,卡车的速度是b千米/时,你能列出怎样的方程? 师生互动 探索新知 1、 发现新知 引导学生观察所列的方程: 这两个方程有哪些共同特征?这些特征与一元一次方程比较,哪些是相同的,哪些是不同的?你能给它们取个名字吗? 根据它们的共同特征,你认为怎样的方程叫做二元一次方程? (二元一次方程的定义:含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。) 2、 巩固新知 判断下列各式是不是二元一次方程(1) (2) (3) (4) 五、 总结 比较一元一次方程和二元一次方程的相同点和不同点 相同点: 方程两边都是整式,含有未知数的项的次数都是一次。
15、如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。 元一次方程教学设计 篇四 一、教材分析 本课内容是在学生掌握了二元一次方程组有关概念之后的学习内容,用代入消元法解二元一次方程组是学生接触到的解方程组的第一种方法,是解二元一次方程组的方法之一,消元体现了“化未知为已知”的重要思想,它是学习本章的重点和难点。学完以后可以帮助我们解决一些实际的问题,也是为了今后学习函数、线性方程组及高次方程组奠定了基础。 二、教学目标 1、使学生学会用代入消元法解二元一次方程组。 2、理解代入消元法的基本思想;了解化“未知为已知”的转化
16、过程,体会化归思想。 三、教学重难点 1、重点:用代入法解二元一次方程组。 2、难点:在“消元”的过程中能够判断消去哪个未知数,使得解方程组的运算转为较简便的过程。 四、教学过程 (1)复习引入 在上节课中我们学习了二院一次方程组的有关概念,并学习了二元一次方程组的概念还学会判断一组值是否是二元一次方程组的解的问题,同学们还记得二元一次方程组和二元一次方程组的解的概念吗?追问二元一次方程组既然有解那么它们的解又怎么求呢? 设计意图:让学生复习巩固二元一次方程组和二元一次方程组解的概念,追问其他一个抛砖引玉的效果,激起学生的学习兴趣,引出课题。 (2)探究新知 此过程通过播放洋葱视频中的代入消元
17、法片段视频,播放致列出二元一次方程组和一元一次后点击暂停,先让学生考虑想清楚两个问题。 一个问题是为什么能用一元一次方程解决的实际问题我们要用二元一次方程组来解决?第二个问题观察二元一次方程组和一元一次方程组之间有何异同?学生想清楚这两个问题后,渗透消元的思想,然后继续播放视频让学生知道二元一次方程组完整的解题过程,并在每一步做出相应的解释,怎么变化而来。 播放视频完后先让学生自主总结归纳解二元一次方程组的基本步骤,教师引导总结。接着完成配套的3个习题,强化训练。 (3)例题讲解 让学生尝试解答 设计意图:让学生通过例1和例2的对比,引出如何选择变化有利于计算的问题。 预想大部分学生例2会存在
18、这样的问题到底选择哪个方程变形,当学生做出例1,犹豫例2时,提出这样两个问题: (1)在解二元一次方程组的步骤中变形的过程我们应当如何变形?把一个方程变形为用含x的式子表示y(或含y的式子表示x) (2)选择哪个方程变形比较简便呢? 再一次激起学生的学习兴趣,接着播放洋葱视频继续代入消元法片段视频,让学生清楚的知道在不同的二元一次方程组中在变形的过程选择那一个方程,选择那一个未知数变形能简便的进行运算。 五、课堂小结 1、这节课你学到了哪些知识和方法? 2、你还有什么问题或想法需要和大家交流分享? 元一次方程教学设计 篇五 一、内容和内容解析 1、内容 代入消元法解二元一次方程组 2、内容解析
19、 二元一次方程组是解决含有两个提供运算未知数 的问题的有力工具,也是解决后续一些数学问题的基础。其解法将为解决这些问题的工具。如用待定系数法求一次函数解析式,在平面直角坐标系中求两直线交点坐标等。 解二元一次方程组就是要把二元化为一元。而化归的方法就是代入消元法,这一方法同样是解三元一次方程组的基本思路,是通法。化归思想在本节中有很好的体现。 本节课的教学重点是:会用代入消元法解一些简单的二元一次方程组,体会解二元一次方程组的思路是消元。 二、目标和目标解析 1、教学目标 (1)会用代入消元法解一些简单的二元一次方程组 (2)理解解二元一次方程组的思路是消元,体会化归思想 2、教学目标解析 (
20、1)学生能掌握代入消元法解一些简单的二元一次方程组的一般步骤,并能正确求出简单的二元一次方程组的解, (2)要让学生经历探究的过程。体会二元一次方程组的解法与一元一次方程的解法的关系,进一步体会消元思想和化归思想 三、教学问题诊断分析 1、学生第一次遇到二元问题,为什么要向一元转化,如何进行转化。需要结合实际问题进行分析。由于方程组的两个方程中同一个未知数表示的是同一数量,通过观察对照,可以发现二元一次方程组向 一元一次方程转化的思路 2、解二元一次方程组的步骤多,每一步需要理解每一步的目的和依据,正确进行操作,把探究过程分解细化,逐一实施。 本节教学难点理:把二元向一元的转化,掌握代入消元法
21、解二元一次方程组的一般步骤。 四、教学过程设计 1、创设情境,提出问题 问题1 篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分,某队10场比赛中得到16分,那么这个队胜负场数分别是多少?你能用一元一次方程解决这个问题吗? 师生活动:学生回答:能。设胜x场,负(10-x)场。根据题意,得2x+(10-x)=16 x=6,则胜6场,负4场 教师追问:你能根据问题中的等量关系列出二元一次方程组吗? 师生活动:学生回答:能设胜x场,负y场。根据题意,得 我们在上节课,通过列表找公共解的方法得到了这个方程组的解,x=6,y=4。显然这样的方法需要一个个尝试,有些麻烦,能不能像解一元一次方程
22、那样来求出方程组的解呢? 这节课我们就来探究如何解二元一次方程组。 设计意图:用引言的问题引人本节课内容,先列一元一次方程解决这个问题,再二元一次方程组,为后面教学做好了铺垫。 问题2 对比方程和方程组,你能发现它们之间的关系吗? 师生活动:通过对实际问题的分析,认识方程组中的两个y都是这个队的负场数,由此可以由一个方程得到y的表达式,并把它代入另一个方程,变二元为一元,把陌生知识转化为熟悉的知识。 师生活动:根据上面分析,你们会解这个方程组了吗? 学生回答:会。 由,得y=10-x 把代入,得2x+(10-x)=16 x=6 设计意图:共同探究,体会消元的过程。 问题3 教师追问:你能把代入
23、吗?试一试? 师生活动:学生回答:不能,通过尝试,x抵消了。 设计意图:由于方程是由方程,得来的,它不能又代回到它本身。让学生实际操作,得到体验,更好地认识这一点。 教师追问:你能求y的值吗? 师生活动:学生回答:把x=6代入得y=4 教师追问:还能代入别的方程吗? 学生回答:能,但是没有代入简便 教师追问:你能写出这个方程组的解,并给出问题的答案吗? 学生回答:x=6,y=4,这个队胜6场,负4场 设计意图:让学生考虑求另一个未知数的过程,并如何优化解法。 师生活动:先让学生独立思考,再追问在这种解法中,哪一步最关键?为什么? 学生回答:代入这一步 教师总结:这种方法叫代入消元法。 教师追问
24、:你能先消x吗? 学生纷纷动手完成。 设计意图:让学生尝试不同的代入消元法,为后面学习选择简单的代入方法做铺垫。 2、 应用新知,拓展思维 例 用代入法解二元一次方程组 师生活动,把学生分两组,一组先消x, 一组先消y,然后每组各派一名代表上黑板完成。 设计意图:借助本题,充分发挥学生的合作探究精神,通过比较,让学生自主认识代入消元法,并学会优选解法。 3、加深认识,巩固提高 练习 用代入法解二元一次方程组 设计意图:提醒并指导学生要先分析方程组的结构特征,学会优选解法。在练习的基础上熟练用代入消元法解二元一次方程组。 4、归纳总结,知识升华 师生活动,共同回顾本节课的学习过程,并回答以下问题
25、 1、 代入消元法解二元一次方程组有哪些步骤? 2、 解二元一次方程组的基本思路是什么? 3、在探究解法的过程中用到了哪些思想方法? 4、你还有哪些收获? 设计意图:通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生自我归纳概括的能力。 5、 布置作业 教科书第93页第2题 五、目标检测设计 用代入法解下列二元一次方程组 设计意图:考查学生对代入法解二元一次方程组的掌握情况。 元一次方程教学设计 篇六 教学目标 知识与技能 (1)初步理解二元一次方程和一次函数的关系; (2)掌握二元一次方程组和对应的两条直线之间的关系; (3)掌握二元一次方程组的图像解法。 过程与方法 (1
26、)教材以“问题串”的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法; (2)通过“做一做”引入例1,进一步发展学生数形结合的意识和能力。 情感与态度 (1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神。 (2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力。 教学重点 (1)二元一次方程和一次函数的关系; (2)二元一次方程组和对应的两条直线的关系。 教学难点 数形结合和数学转化的思想意识。 教学准备 教具:多媒体课件、三角板。 学具:铅笔、直尺、练习本、坐
27、标纸。 教学过程 第一环节:设置问题情境,启发引导(5分钟,学生回答问题回顾知识) 内容:1.方程x+y=5的解有多少个?是这个方程的解吗? 2、点(0,5),(5,0),(2,3)在一次函数y=的图像上吗? 3、在一次函数y=的图像上任取一点,它的坐标适合方程x+y=5吗? 4、以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=的图像相同吗? 由此得到本节课的第一个知识点: 二元一次方程和一次函数的图像有如下关系: (1)以二元一次方程的解为坐标的点都在相应的函数图像上; (2)一次函数图像上的点的坐标都适合相应的二元一次方程。 第二环节自主探索方程组的解与图像之间的关系(10分钟,
28、教师引导学生解决) 内容: 1、解方程组 2、上述方程移项变形转化为两个一次函数y=和y=2x,在同一直角坐标系内分别作出这两个函数的图像。 3、方程组的解和这两个函数的图像的交点坐标有什么关系?由此得到本节课的第2个知识点:二元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法; (1)求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标; (2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解。 (3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种。 元一次方程公开课教案 篇七 教学目标: 1.会用加减消元法解二元一次方程组。 2
29、.能根据方程组的特点,适当选用代入消元法和加减消元法解二元一次方程组。 3.了解解二元一次方程组的消元方法,经历从“二元”到“一元”的转化过程,体会解二元一次方程组中化“未知”为“已知”的“转化”的思想方法。 教学重点: 加减消元法的理解与掌握 教学难点: 加减消元法的灵活运用 教学方法: 引导探索法,学生讨论交流 教学过程: 一、情境创设 买3瓶苹果汁和2瓶橙汁共需要23元,买5瓶苹果汁和2瓶橙汁共需33元,每瓶苹果汁和每瓶橙汁售价各是多少? 设苹果汁、橙汁单价为x元,y元。 我们可以列出方程3x+2y=23 5x+2y=33 问:如何解这个方程组? 二、探索活动 活动一: 1、上面“情境创
30、设”中的方程,除了用代入消元法解以外,还有其他方法求解吗? 2、这些方法与代入消元法有何异同? 3、这个方程组有何特点? 解法一:3x+2y=23 5x+2y=33 由式得 把式代入式 33 解这个方程得:y=4 把y=4代入式 则 所以原方程组的。解是x=5 y=4 解法二:3x+2y=23 5x+2y=33 由式: 3x+2y-(5x+2y)=23-33 3x-5x=-10 解这个方程得:x=5 把x=5代入式, 35+2y=23 解这个方程得y=4 所以原方程组的解是x=5 y=4 把方程组的两个方程(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程
31、,这种解方程组的方法叫做加减消元法,简称加减法。 三、例题教学: 例1.解方程组x+2y=1 3x-2y=5 解:+得,4x=6 将代入,得 解这个方程得: 所以原方程组的解是 例2.解方程组5x-2y=4 2x-3y=-5 解:3,得 15x-6y=12 3,得 4x-6y=-10 ,得: 11x=22 解这个方程得x=2 将x=2代入,得 52-2y=4 解这个方程得:y=3 所以原方程组的解是x=2 y=3 巩固练习(二):练一练1.(2)(3)(4)2 四、思维拓展: 解方程组: 五、小结: 1、掌握加减消元法解二元一次方程组 2、灵活选用代入消元法和加减消元法解二元一次方程组 六、作
32、业 习题10.31.(3)(4)2 元一次方程教学设计 篇八 教学目标: 1、会用加减消元法解二元一次方程组。 2、能根据方程组的特点,适当选用代入消元法和加减消元法解二元一次方程组。 3、了解解二元一次方程组的消元方法,经历从“二元”到“一元”的转化过程,体会解二元一次方程组中化“未知”为“已知”的“转化”的思想方法。 教学重点: 加减消元法的理解与掌握 教学难点: 加减消元法的灵活运用 教学方法: 引导探索法,学生讨论交流 教学过程: 一、情境创设 买3瓶苹果汁和2瓶橙汁共需要23元,买5瓶苹果汁和2瓶橙汁共需33元,每瓶苹果汁和每瓶橙汁售价各是多少? 设苹果汁、橙汁单价为x元,y元。 我
33、们可以列出方程3x+2y=23 5x+2y=33 问:如何解这个方程组? 二、探索活动 活动一: 1、上面“情境创设”中的方程,除了用代入消元法解以外,还有其他方法求解吗? 2、这些方法与代入消元法有何异同? 3、这个方程组有何特点? 解法一:3x+2y=23 5x+2y=33 由式得 把式代入式 33 解这个方程得:y=4 把y=4代入式 则 所以原方程组的解是x=5 y=4 解法二:3x+2y=23 5x+2y=33 由式: 3x+2y-(5x+2y)=23-33 3x-5x=-10 解这个方程得:x=5 把x=5代入式, 35+2y=23 解这个方程得y=4 所以原方程组的解是x=5 y
34、=4 把方程组的两个方程(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程,这种解方程组的方法叫做加减消元法(eliminationbyadditionorsubtraction),简称加减法。 三、例题教学: 例1.解方程组x+2y=1 3x-2y=5 解:+得,4x=6 将代入,得 解这个方程得: 所以原方程组的解是 巩固练习(一):练一练1 。(1) 例2.解方程组5x-2y=4 2x-3y=-5 解:3,得 15x-6y=12 3,得 4x-6y=-10 ,得: 11x=22 解这个方程得x=2 将x=2代入,得 52-2y=4 解这个方程得:y=
35、3 所以原方程组的解是x=2 y=3 四、思维拓展: 解方程组: 五、小结: 1、掌握加减消元法解二元一次方程组 2、灵活选用代入消元法和加减消元法解二元一次方程组 元一次方程公开课教案 篇九 教学目标 知识与技能 (1)初步理解二元一次方程和一次函数的关系; (2)掌握二元一次方程组和对应的两条直线之间的关系; (3)掌握二元一次方程组的图像解法。 过程与方法 (1)教材以“问题串”的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法; (2)通过“做一做”引入例1,进一步发展学生数形结合的意识和能力。 情感与态度 (1)在探究二元一次方程和一
36、次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神。 (2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力。 教学重点 (1)二元一次方程和一次函数的关系; (2)二元一次方程组和对应的两条直线的关系。 教学难点 数形结合和数学转化的思想意识。 教学准备 教具:多媒体课件、三角板。 学具:铅笔、直尺、练习本、坐标纸。 教学过程 第一环节:设置问题情境,启发引导(5分钟,学生回答问题回顾知识) 内容: 1.方程x+y=5的解有多少个?是这个方程的解吗? 2.点(0,5),(5,0),(2,3)在一次函数y=的图像上吗? 3.在一次函数y=
37、的图像上任取一点,它的坐标适合方程x+y=5吗? 4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=的图像相同吗? 由此得到本节课的第一个知识点: 二元一次方程和一次函数的图像有如下关系: (1)以二元一次方程的解为坐标的点都在相应的函数图像上; (2)一次函数图像上的点的坐标都适合相应的二元一次方程。 第二环节自主探索方程组的解与图像之间的关系(10分钟,教师引导学生解决) 内容: 1.解方程组 2.上述方程移项变形转化为两个一次函数y=和y=2x,在同一直角坐标系内分别作出这两个函数的图像。 3.方程组的解和这两个函数的图像的交点坐标有什么关系?由此得到本节课的第2个知识点:二
38、元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法; (1)求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标; (2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解。 (3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种。 注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组。 第三环节典型例题(10分钟,学生独立解决) 探究方程与函数的相互转化 内容:例1用作图像的方法解方程组 例2如图,直线与的交点坐标是。 第四环节反馈练习(10分钟,学生解决全班交流) 内容: 1.已知一次
39、函数与的图像的交点为,则。 2.已知一次函数与的图像都经过点A(2,0),且与轴分别交于B,C两点,则的面积为( )。 (A)4(B)5(C)6(D)7 3.求两条直线与和轴所围成的三角形面积。 4.如图,两条直线与的交点坐标可以看作哪个方程组的解? 第五环节课堂小结(5分钟,师生共同总结) 内容:以“问题串”的形式,要求学生自主总结有关知识、方法: 1.二元一次方程和一次函数的。图像的关系; (1)以二元一次方程的解为坐标的点都在相应的函数图像上; (2)一次函数图像上的点的坐标都适合相应的二元一次方程。 2.方程组和对应的两条直线的关系: (1)方程组的解是对应的两条直线的交点坐标; (2
40、)两条直线的交点坐标是对应的方程组的解; 3.解二元一次方程组的方法有3种: (1)代入消元法; (2)加减消元法; (3)图像法。要强调的是由于作图的不准确性,由图像法求得的解是近似解。 第六环节作业布置 习题7.7A组(优等生)1、2、3B组(中等生)1、2C组1、2 元一次方程教学设计 篇十 学习目标: 1、 使学生初步理解二元一次方程与一次函数的关系 2、 能根据一次函数的图像求二元一次方程组的近似值 3、 能解二元一次方程组的方法求两条直线的交点坐标 学习重点: 1、 用作图像法求二元一次方程组的近似值 2、 用解二元一次方程组的方法求两条直线的交点坐标 学习难点: 1、 做图像时要
41、标准、精确,近似值才接近 2、 解二元一次方程组时计算准确,方法适宜 学习方法: 先自学课本,用心思考自主学习部分,努力独立完成,再与其他同学讨论未明白的内容。课上展示,针对自己不明白问题多听多问。 自主学习部分: 问题1.(1)方程x+y=5的解有多少组?写出其中的几组解。 (2)在直角坐标系中分别描出以上这些解为坐标的点,它们在一次函数y=5-x的图像上吗? (3)在一次函数y=5-x的图像上任取一点,它们的坐标适合方程x+y=5吗? (4)以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=5-x的图像相同吗? (5)由以上的探究过程,你发现了什么? 问题2. (1)在同一个直角坐标系内分别作出一次函数y=5-x和y=2x-1的图像,这两个图像有交点吗?如果有,写出交点坐标? (2)一次函数y=5-x和y=2x-1的交点坐标与方程 组 的解有什么关系?你能说明理由吗? (3)由以上探究过程,我们发现解二元一次方程组的方法除了加减消元法和代入消元法,还可以用 法解方程组;我们还发现可以利用解二元一次方程组的方法求两条直线交点的坐标。 合作探究: 1、 用做图像的方法解方程组 2、用解方程的方法求直线y=4-2x与直线y=2x-12交点 它山之石可以攻玉,32