《2022年人教版高中数学必修⑤3.3.2《简单的线性规划问题》教学设计 .pdf》由会员分享,可在线阅读,更多相关《2022年人教版高中数学必修⑤3.3.2《简单的线性规划问题》教学设计 .pdf(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、课题:必修3.3.2 简单的线性规划问题三维目标:1、 知识与技能(1)使学生进一步了解二元一次不等式表示平面区域;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;(2)了解线性规划问题的图解法,并能应用它解决相关问题及一些简单的实际问题。2、过程与方法(1)通过引导学生合作探究,将实际生活问题转化为数学中的线性规划问题来解决,提高数学建模能力。同时,可借助计算机的直观演示可使教学更富趣味性和生动性;(2)将实际问题中错综复杂的条件列出目标函数和约束条件对学生而言既是重点又是难点,在此,教师要根据学生的认知、理解情况,引导学生自己动手建立数学模型,自我不断体验、感受
2、、总结;同时,要给学生正确的示范,利用精确的图形并结合推理计算求解3、情态与价值观(1)培养学生数形结合、等价转化、等与不等辩证的数学思想;(2) 通过对不等式知识的进一步学习,不断培养自主学习、合作交流、善于反思、勤于总结的科学态度和锲而不舍的钻研精神,提高参与意识和合作精神;(3)通过生动具体的现实问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。体验在学习中获得成功的成就感,为远大的志向而不懈奋斗。教学重点:(1)把实际问题转化成线性规划问题,即建立数学模型;(2)用图解法解决简单的线性规
3、划问题。教学难点:准确求得线性规划问题的最优解(尤其是整数解的求解思想)教具:多媒体、实物投影仪教学方法: 合作探究、分层推进教学法教学过程:一、双基回眸科学导入:精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 1 页,共 12 页 - - - - - - - - - - 前面,我们学习了二元一次不等式(组)及其表示的区域并且体会到在实际问题中的应用前景,感受到其重要性。下面,首先我们一起回顾一下这些知识和方法:几个概念:1. 二元一次不等式 .:我们把含有 两个未知数,并且未知数的次数是1 的不等式称为
4、 二元一次不等式 . 2. 二元一次不等式组 .:我们把由几个二元一次不等式组成的不等式 组称为 二元一次不等式组 . 3二元一次不等式组的解集:满足二元一次不等式组的x 和 y 的取值构成有序数对( , )x y,所有这样的有序数对( ,)x y构成的集合称为 二元一次不等式组的解集.结论:1二元一次不等式Ax+By+C0 在平面直角坐标系中表示直线Ax+By+C=0 某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)而不等式0CByAx表示区域时则包括边界,把边界画成实线 . 2二元一次不等式表示哪个平面区域的判断方法:由于对在直线Ax+By+C=0 同一侧的所有点 (yx,) ,
5、把它的坐标(yx,) 代入Ax+By+C,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C0 表示直线哪一侧的平面区域.(特殊地,当C0 时,常把原点作为此特殊点)在生活、生产中,经常会遇到资源利用、人力调配、生产安排的等问题,如某工厂用A、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用 4 个 A配件耗时 1h,每生产一件乙产品使用4 个 B配件耗时 2h,该厂每天最多可从配件厂获得16 个 A配件和 12 个 B配件,按每天工作 8h 计算,该厂所有可能的日生产安排是什么?根据我们上节课所学知识,大家不难列出相
6、应的量的约束条件,但我们列出(或画出)后,应该要解决生产中的必需的问题,精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 2 页,共 12 页 - - - - - - - - - - 这就是我们今天要探究的问题二、 创设情境合作探究:【引领学生合作探究,通过上述问题的进一步所求总结线性规划问题】上面的问题应该到达下面的位置:解:设甲、乙两种产品分别生产x、y 件,由已知条件可的二元一次不等式组:28,416,412,00 xyxyxy()将上述不等式组表示成平面上的区域,如图中阴影部分的整点。若继续问: 若
7、生产一件甲产品获利2 万元,生产一件乙产品获利 3 万元,采用哪种生产安排利润最大?探究如下:设生产甲产品x 乙产品y 件时,工厂获得的利润为z, 则z=2x+3y. 这样,上述问题就转化为:当 x、y 满足不等式 ()并且为非负整数时, z 的最大值是多少? 变形:把22333zzxyyx转变为这是斜率为23z,在y轴上的截距为 的直线3;当 z 变化时,可以得到一组互相平行的X y O 2 4 2 4 6 8 y=3 X=4 x+2y-8=0 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 3 页,共
8、 12 页 - - - - - - - - - - 直线;233zyx当直线与不等式组确定的平面区域内有公共点时,在区域内找一个点 P,使直线经点 P时截距3z最大; 平移: 通过平移找到满足上述条件的直线; 求解: 找到给 M (4,2)后,求出对应的截距及z 的值。由上图可以看出,当实现233zyx金国直线 x=4 与直线 x+2y-8=0 的交点M (4,2)时,截距3z的值最大,最大值为143,这时2x+3y=14.所以,每天生产甲产品4 件,乙产品 2 件时,工厂可获得最大利润 14 万元。【引领学生总结出线性规划问题的相关概念】28,416,412,00 xyxyxy若23zxy,
9、式中变量 x、y 满足上面不等式组,则不等式组叫做变量x、y 的,23zxy叫做;又因为这里的23zxy是关于变量x、y 的一次解析式,所以又称为。满足线性约束条件的解叫做,由所有可行解组成的集合叫做可行域;其中使目标函数取得最大值的可行解叫做最优解。【小试牛刀 】1求yxz2的最大值,使x、y满足约束条件11yyxxy2. 求yxz53的最大值,使x、y满足约束条件3511535yxxyyx3、不等式组0300yxyx表示的平面区域内的整点坐标为精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 4 页,共
10、 12 页 - - - - - - - - - - 三、互动达标巩固所学:问题.1 营养学家指出,成人良好的日常饮食应该至少提供0.075kg的碳水化合物 ,0.06kg的蛋白质 ,0.06kg的脂肪.1kg 的食物 A 含有0.105kg 的碳水化合物 ,0.07kg蛋白质,0.14kg脂肪, 花费 28 元; 而1kg 食物 B 含有 0.105kg 碳水化合物 ,0.14kg蛋白质 ,0.07kg脂肪,花费 21 元. 为了满足营养专家指出的日常饮食要求, 同时花费最低 ,需要同时食用食物A和食物 B多少 kg? 【分析】 将已知数据列成下表:食物/kg 碳水化合物 /kg 蛋白质/kg
11、 脂肪/kg A 0.105 0.07 0.14 B 0.105 0.14 0.07 【解析】 设每天食用xkg 食物 A,ykg 食物 B,总成本为z,那么;0, 0,06.007.014. 0,06.014.007. 0,075. 0105. 0105. 0yxyxyxyx化简得. 0, 0, 6714, 6147, 577yxyxyxyx目标函数为yxz2128. 作出二元一次不等式组所表示的平面区域,即可行域. 考虑yxz2128,将它变形为2134zxy,这是斜率为34、随z变化的一族平行线 .21z是直线在y轴上的截距,当21z取最小值时,z的值最小 . 当然直线要与可行域相交,即
12、在满足约束条件时目标函数yxz2128取得最小值 . 由上图可见,当直线yxz2128经过可行域上的点M时,截距21z最小,即z最小. 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 5 页,共 12 页 - - - - - - - - - - 解方程组, 6714,577yxyx得M的坐标为71x,74y. 所以162128minyxz. 答:每天食用食物A 约 143g,食物 B 约 571g,能够满足日常饮食要求,又使花费最低,最低成本为16 元. 【点评】 线性规划问题首先要根据实际问题列出表达约
13、束条件的不等式,然后分析目标函数中所求量的几何意义,由数形结合思想求解问题 . 利用线性规划的思想方法解决某些实际问题属于直线方程的一个应用,关键在于找出约束条件与目标函数,准确地描可行域,再利用图形直观求得满足题设的最优解. 问题.2 要将两种大小不同的钢板截成A、B、C 三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:钢板类型规格类型A规格B规格C规格第一种钢板2 1 1 第二种钢板1 2 3 今需要 A、B、C三种规格的成品分别为15,18,27 块,用数学关系式和图形表示上述要求。并求出各截这两种钢板多少张可得到所需A、B、C三种规格成品,且使所用钢板张数最少?【分析】
14、解决问题1 时是先将已知数据列成表,而此题已经给出了表,根据此表直接列出约束条件既可【解析】 设需截第一种钢板x张,第二种钢板y张,根据题意可得:.0,0,273,182,152yxyxyxyx作出以上不等式组所表示的平面区域(或打出投影片 7.4.3 B), 即可行域:目标函数为z=x+y,精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 6 页,共 12 页 - - - - - - - - - - 作出在一组平行直线x+y=t(t为参数)中经过可行域内的点且和原点距离最近的直线,此直线经过直线x+3y=
15、37 和直线 2x+y=15的交点A(539,518) ,直线方程为x+y=557. 由于539518和都不是整数,而最优解(x,y)中,x、y必须满足x,y Z,所以,可行域内点 (539,518) 不是最优解 . 经过可行域内的整点(横坐标和纵坐标都是整数的点)且与原点距离最近的直线是x+y=12,经过的整点是B(3,9) 和C(4,8) ,它们是最优解 . 答:要截得所需规格的三种钢板,且使所截两种钢板的张数最少的方法有两种,第一种截法是截第一种钢板3 张、第二种钢板9张;第二种截法是截第一种钢板4 张、第二种钢板8 张,两种方法都最少要截得两种钢板共12张. 【点评】 解题步骤小结:先
16、将数据整理列表, 分析各量之间的关系,进一步确立变量和目标函数分析约束条件并列出约束条件图解法求解问题.3 设yxz32,式中yx,满足下列条件:1255334xyxyx求 z 的最大值和最小值。【分析】 此种问题显然是上面实际问题中的一个步骤,解决此题是为了进一步让学生锻炼解决此种问题的方法和步骤【解析】 让学生自主作出此题并总结出简明的步骤:【点评】 简明的步骤为:指出线性约束条件和线性目标函数画出可行域的图形平移直线332zxy,在可行域内找到最优解问题.4 已知1131yxyx求yx24的取值范围。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名
17、师归纳 - - - - - - - - - -第 7 页,共 12 页 - - - - - - - - - - 【分析】 此题是先分别求出x、y 范围还是用yx和yx把yx24表示出来,再进一步求解同学们交流一下【解析】大家看下面两种解法哪一种错了解法一: 由已知可求出 x 和 y 的取值范围:.20;20yx所以yx24的取值范围为: 0 , 12 解法二: 因)()(324yxyxyx所以,yx24的取值范围为: 2 ,10 【点评】经过分析、探讨解法一是错误的,原因是:此处yx不是相互独立的关系,而是由不等式组决定的相互制约关系,x 取最大(小)值时, y 并不能同时取得最大(小)值;y
18、取最大(小)值时, x 并不能同时取得最大(小)值;四、思悟小结:知识线:(1)线性规划的含义;(2)线性规划的相关概念:目标函数、可行解、可行域、最优解等基本概念。思想方法线:(1)建模思想方法;(2)等价转化思想;(3)数形结合思想。题目线:(1)解决线性规划的基本问题;(2)解决关于线性规划的实际问题;(3)解决关于线性规划的综合问题。五、针对训练巩固提高:1. 已知 x,y 满足102012xyxyx,则yxz3的最小值为精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 8 页,共 12 页 - -
19、 - - - - - - - - 2. 已知 x,y 满足02200yxyxy,则11xyw的取值范围是3. 电视台应某企业制约播放两套连续剧,其中,连续剧甲每次播放时间为 80min,其中广告时间为1min,收视观众为 60 万,连续剧乙每次播放时间为40min,广告时间为 1min,收视观众为 20 万,已知此企业与电视台达成协议,要求电视台每周至少播放6min 广告,而电视台每周只能为该企业提供不多于320min 的节目时间,如果你是电视台的制片人,电视台每周应播映两套连续剧各多少次,才能获得最高的收视率?4 一个化肥厂生产甲、乙两种混合肥料,生产1 车皮甲种肥料的主要原料是磷酸盐4t
20、、硝酸盐18t ;生产一车皮乙种肥料需要的主要原料是磷酸盐1t 、硝酸盐 15t. 现库存磷酸盐10t 、硝酸盐 66t ,在此基础上生产这两种混合肥料。列出满足生产条件的数学关系式,并画出相应的平面区域。若生产1 车皮甲种肥料,产生的利润为 10000 元;生产 1 车皮乙种肥料,产生的利润为5000元。那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?5. 求 z=x-y 的最大值和最小值,使式中的x,y 满足线性约束条件0522012yxxyyx6. ABC中,三个顶点坐标分别为A(2,4),B(-1,0),C(1,0),点 P( x , y ) 在ABC的 内 部 和 边界 上
21、 运 动 , 则z=x-y的 最 大 值精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 9 页,共 12 页 - - - - - - - - - - 是,最小值是。7. 已知qpxxf2,若114f,521f,则3f的最小值是,最大值是。【作业】 课本第 93 页 A组 4,B组 3 【疑点答疑】典型错解剖析已知f(x)=ax2+bx,1f( - 1) 2,2 f(1) 4, 求 f(-2)的取值范围。【错解】由 1f( -1)2,2f(1) 4 得(2)4ba2(1)2b-a1(1)+(2),并同除以
22、2,得323a(3)再由( 1)得-2- a+b-1 (4) (2)+(4),并同除以 2 得 0b23 (5) 由(3) , (5)得 64a12, -3-2b034a-2b12,故 3f( - 2)12.【剖析】对于所求变量与已知量之间有依赖关系,即所求范围的变量是非独立的这类问题,学生一般都想从根据题设把所求量中的参数求出,再求出所求变量的范围。由于这类问题量与量间的依赖性,因此该解法有时会扩大(或缩小)变量的取值范围。上述解答中,确定323a与 0b23是对的,但 a,b 不是相互独立的量,不能在这两个区间内独立取值(如当a=2 时,b 只能在 0,1内取值;当 a=23时,b 只能取
23、21). 因此 4a-2b 的最大值不是 12,最小值也不是 3. 显然是忽视了 a,b 间的依赖关系误选基本量而致错。【正解 1】(基本量法) 一个二次函数由三个独立的条件确定,本题中的二次函数f(x)=ax2+bx, 由于常数项已确定为0,故由两个独立条件即可确定。可以独立选取的变量是f(-1)及 f(1) ,应将 f(-1)和 f(1) 作为精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 10 页,共 12 页 - - - - - - - - - - 基本量,将 f(-2)用 f(-1)及 f(1)
24、 表示,才可求得正确结论。设 f(-1)=u, f(1)=v,由已知得vbau b-a,解得2vua,2uvbf(-2)=4a-2b=(2u+2v)-(v-u)=3u+v 1u2, 2 v4, 53u+v10故 f(- 2)5,10. 注 也 可 设 f(-2)=mf(-1)+nf(1)由 已 知 条件 求 得 待 定 系 数m=3,n=1. 【正解 2】(平面区域图解法) 在直角坐标系中,满足2a+b4且 1a - b2 的点( a,b )的集合为矩形ABCD区域(如图),则原问题转化为在平面区域ABCD 上,求二元一次函数f(-2)=4a-2b的最值问题,即求直线f(-2)=4a-2b过平
25、面区域ABCD且纵截距最大或最小。由于直线f(-2)=4a-2b斜率为 2,因此 4a-2b 在 D(23,21)处取得最小值 5,在 B(3,1)处取得最大值 10,故 5f( - 2)10精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 11 页,共 12 页 - - - - - - - - - - 文档编码:KDHSIBDSUFVBSUDHSIDHSIBF-SDSD587FCDCVDCJUH 欢迎下载 精美文档欢迎下载 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 12 页,共 12 页 - - - - - - - - - -