2022年人教版高中数学必修二《圆的标准方程》教案 .pdf

上传人:H****o 文档编号:9315174 上传时间:2022-04-02 格式:PDF 页数:13 大小:401.87KB
返回 下载 相关 举报
2022年人教版高中数学必修二《圆的标准方程》教案 .pdf_第1页
第1页 / 共13页
2022年人教版高中数学必修二《圆的标准方程》教案 .pdf_第2页
第2页 / 共13页
点击查看更多>>
资源描述

《2022年人教版高中数学必修二《圆的标准方程》教案 .pdf》由会员分享,可在线阅读,更多相关《2022年人教版高中数学必修二《圆的标准方程》教案 .pdf(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、教案说明圆是学生比较熟悉的曲线,初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点确定为用解析法研究圆的标准方程及其简单应用。一、设计理念设计的根本出发点是促进学生的发展。教师以合作者的身份参与,课堂上建立平等、互助、融洽的关系,师生共同研究,共同提高。二、设计思路(1)突出重点抓住关键突破难点求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路。在例题的设计中,我用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有

2、效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成。(2)学生主体教师主导探究主线本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终。从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的。另外,我在例题2 的教学,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,他们体验到成功的快乐,感受到数学的魅力。在一个个问题的驱动下,高效的完成本节的学习任务。三、媒体设计

3、本节采用 powerpoint媒体,知识容量大,同时又有图形。为了在短时间内完成教学内容,故采用演示文稿的方式,增加信息量,节省时间。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 1 页,共 13 页 - - - - - - - - - - 同时动态演示图形,刺激学生的感官,引起更强的注意,提高课堂教学效率。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 2 页,共 13 页 - - - - - - - - - -

4、 4.1.1 圆的标准方程(教案)精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 3 页,共 13 页 - - - - - - - - - - 4.1.1圆的标准方程教材:普通高中课程标准实验教科书(人教A 版)数学(必修 2)第四章第一节一、教学目标1、知识目标(1)在平面直角坐标系中,探索并掌握圆的标准方程;(2)会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程。2、能力目标(1)进一步培养学生用解析法研究几何问题的能力;(2)使学生加深对数形结合思想和待定系数法的理解;(3)增强学生用数学的意

5、识。3、情感目标通过运用圆的知识解决实际问题的学习,培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习热情和兴趣。二、教学重点、难点1、教学重点:圆的标准方程的推导过程及圆的标准方程的特点的明确。2、教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。三、教学方法与手段1、教学方法:通过师生互动交流教给学生研究、解决数学问题的切实方法,在教学过程中采用“启发式”,“探究式”,“开放式”等教学模式,让学生学会学习,学会探索和学会与人合作。体验自主获取知识的乐趣,培养他们学习数学的兴趣。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎

6、下载 名师归纳 - - - - - - - - - -第 4 页,共 13 页 - - - - - - - - - - 2、教学手段:使用多媒体辅助教学。四、教学过程与设计教师活动设计学生活动设计1、复习提问、引入课题师: 在初中,我们学过圆,圆的定义是怎样的?师:图中哪个点是定点?哪个点是动点?动点具有什么性质?确定圆的因素有哪些?(多媒体演示)师: 圆心和半径能确定一个圆,能否用一个方程来表示圆呢?2、探索研究师: 确定圆的基本条件为圆心和半径,在平面直角坐标系中,设圆的圆心坐标为( , )C a b,半径为r(其中, ,a b r都是常数;0r) 。下面我们一起探讨圆的方程是怎样的。设(

7、 , )M x y为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)|PMMCr,如图所示由两点间的距离公式,点M 的坐标适合的条件可以表示为22()()xaybr式两边平方,得222()()xaybr引导学生从两个方面验证222()()xaybr为圆的方程,得出结论。方程称为圆心为( , )C a b,半径为r的圆的方程,把它叫做圆的标准方程。师:这个方程有什么特点?(形式上,左边是两个式子的平方和,右边是半径的平方,括号内是差的形式,还可以看出圆心坐标(a,b)和半径r。 )学生回忆,并回答。学生思考。学生在课堂上与老师一起推导 出 圆 的 方程。学生思考,并一起回答。学生思考后

8、回答。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 5 页,共 13 页 - - - - - - - - - - 师: 圆心在坐标原点,半径长为r的圆 的方程是什么?(222xyr)3、尝试练习师: 很好!实际上圆心和半径分别决定圆的位置和大小。由此可见,要确定圆的方程,只需确定, ,a b r这三个独立变量即可。多媒体演示练习 练习 1: (口答)求下列圆的圆心及半径(1)224xy(2)22(1)3xy答案: (1)(0,0)C,2r(2)( 1,0)C,3r变式:222(2)(5)xyaEMBED

9、 Equation.DSMT4 (0)a答案:( 2,5),|Cra4、例题分析、巩固应用师:下面我们通过例题来看看有关圆的标准方程的问题。多媒体演示 例 : (1)写出圆心在坐标原点,半径长为3的圆的方程;(2)写出圆心为(2,3)A,半径长等于5的圆的方程,并判断点1(5, 7)M,2(5,1)M是否在这个圆上。解: (1)223xy(2)圆心是(2, 3)A,半径长等于5的圆的标准方程是22(2)(3)25xy。 把 点1(5, 7)M的 坐 标 代 入 方 程22(2)(3)25xy,左右两边相等,点1M的坐标适合圆的方程,所以点1M在这个圆上;把点2(5,1)M的坐标代入方程学生完成

10、此练习后举手,老师抽三名学生回答。学生独立思考后,在课堂练习本上完成此例举手,老师抽学生回答。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 6 页,共 13 页 - - - - - - - - - - 22(2)(3)25xy,左右两边不相等,点2M的坐标不适合圆的方程,所以点2M不在这个圆上(如下图) 。点评: 本题要求首先根据坐标与半径大小写出圆的标准方程,然后 给一 个点 ,判 断该 点与圆 的关系,这里体现了坐标法的思想,根据圆心坐标及半径写方程 从几何到代数;根据坐标是否满足方程来看点在不在圆

11、上从代数到几何。师:在例 1(2)问中,已判断点2M不在圆上了,那么点2M到底在圆内,还是在圆外?师 : 点000(,)Mxy在 圆222()()xaybr内 的 条 件 是什么?在圆上呢?在圆外呢?多媒体演示 设000(,)Mxy到圆心( , )C a b的距离为d,10222000()()drMxaybr点在圆内20 222000()()drMxaybr点在圆上30 222000()()drMxaybr点在圆外练习: 请判断(2,3)(3,1)(1,0)ABC与圆22(1)(1)4xy的位置关系例 2:已知圆心为C 的圆经过点(1,1)A和(2,2)B,且圆心C在直线:10lxy上,求圆心

12、为 C 的圆的标准方程。解法 1 分析: 多媒体演示 抽一名学生回答。学 生 独 立 思考 , 自 主 探究,抽一名学生回答。学生独立完成老师抽学生回答学 生 独 立 思考,分组讨论解法,老师抽学生回答讨论的结果。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 7 页,共 13 页 - - - - - - - - - - ( 教师板书示范后多媒体演示) 解法 1:因为(1,1)A,(2,2)B,所以线段AB的中点D的坐标为31(,)22,直线AB的斜率213,21ABk因此线段 AB 的垂直平分线l的方程

13、是113(),232yx即330 xy圆心C的坐标是方程组33010 xyxy的解。解此方程组,得32xy所以圆心 C 的坐标是(3, 2)圆心为 C 的圆的半径长22(1 3)(1 2)5rAC所以,圆心为 C 的圆的标准方程是22(3)(2)25xy抽 一 名 学 生发表 自 己 的 见解。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 8 页,共 13 页 - - - - - - - - - - 师:还能用其他方法解决这个问题吗?请试试。解法 2:设所求圆的标准方程是22()(),xaybr则222

14、222(1)(1)(2)( 2)10abrabrab解得325abr所以,圆心坐标为( 3, 2)所以半径| 5rCB所以,所求圆的标准方程是22(3)(2)25xy师: 除了这两种解法,还有其它解法吗?解法 3:因为圆心 C 在直线:10l xy上所以可设( ,1)C a a因为| |CACB所以2222(1)(1 1)(2)(12)aaaa解得3a所以圆心 C( 3, 2)所以半径| 5rCB所以,所求圆的标准方程是22(3)(2)25xy点评: 一题多解的探究可纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大。5、巩固练习师: 非常好!下面大家动手

15、做如下习题。 (多媒体演示)圆C的圆心在x轴上,并且过点( 1,1)(1,3),AB和C求圆的方抽一名学生说出解法。抽一名学生上黑板板书,老师再讲评。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 9 页,共 13 页 - - - - - - - - - - 程。解:依题可设圆心( ,0)C a,因为| |CACB所以2222(1)(01)(1)(03)aa解得2a所以圆心(2,0)C所以半径22|(21)(01)10rCA所以,所求的圆的标准方程为22(2)10 xy6、课堂小结师: 本节课我们学到了什

16、么?(1)牢记:圆的标准方程222()()xaybr;(2)明确:点与圆的位置关系;(3)方法:根据题设条件列出关于, ,a b r的方程组,解方程组得圆的标准方程。根据题设条件直接求出圆心坐标和半径长,从而得到圆的标准方程。7、课外作业 :P124A 组 2,3 8、拓展提升思考 :ABC的三个顶点的坐标,分别是(5,1)A,(7,3)B,(2,8)C,求它的外接圆的方程。(多媒体演示)解: 设所 求 圆的 方 程 是222()()xaybr因为(5,1)A,(7, 3)B,(2, 8)C都在圆上,所以它们的坐标都满足方程,于是222222222(5)(1)(7)(3)(2)(8)abrab

17、rabr师:如何解这个方程组?抽一名学生回答。学生思考,并在练习本上独立完成。引导学生集体回答。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 10 页,共 13 页 - - - - - - - - - - 师: 要解出这个方程组,要展开括号,还要拿两个方程相减,方法很繁,计算量也很大,有没有更简单的方法呢?我们将会在下一节圆的一般方程中学习,且听下节精彩分解。9、备用练习(供学有余力的学生学习)(1)求以(1,3)C为圆心,并且和直线3470 xy相切的圆的标准方程;(2)圆心在点(2, 1),且截直线

18、1yx所得弦长为2 2,求圆的方程。五、板书设计4.1.1 圆的标准方程一、圆的标准方程的定义二、点与圆的位置关系三、求圆的标准方程的方法例 2:练习:六、教学后记圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用。本课时是圆的方程的第一课时,由于学生是在初中学习圆的相关知识,知识的遗忘较多,再加上学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,因此在教学设计时,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路。我选择的教学方法是在学生学习了一个新知识后立即进行练习,从而达到让学生牢固掌握所学知识并能用所

19、学知精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 11 页,共 13 页 - - - - - - - - - - 识来解决一些具体问题的效果。具体的讲,在学生推导出圆的标准方程,引导学生分析圆的标准方程的结构特征后,选择了3 道直接运用圆的标准方程的练习题,目的是让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,这些练习题都采取从易到难的梯度进行的,通过这样的训练来达到让学生充分掌握圆的标准方程的形式。我适当引导学生独立思考自觉完成例 1 后,进而探究某点与圆的位置关系的判断,总结方法。在讲解例2

20、时,我要求学生分组讨论,合作交流,为学生设立充分的探究空间,在解法上我用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神。讲完后及时通过一个练习巩固所学方法,最后让学生总结本节课学到的知识,通过一道思考题拓展提升,承上启下,引出下节课所学内容,留下悬念,且布置好课外作业及练习,作业的目的是反馈学生的学习效果,练习是为学有余力的学生提供钻研的机会。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 12 页,共 13 页 - - - - - - - - - - 文档编码:KDHSIBDSUFVBSUDHSIDHSIBF-SDSD587FCDCVDCJUH 欢迎下载 精美文档欢迎下载 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 13 页,共 13 页 - - - - - - - - - -

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁