《【教育资料】《曲线运动、万有引力》综合知识梳理学习精品.pdf》由会员分享,可在线阅读,更多相关《【教育资料】《曲线运动、万有引力》综合知识梳理学习精品.pdf(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、教育资源 教育资源 曲线运动、万有引力综合知识梳理【学习目标】1.理解运动的合成与分解 2.熟练掌握平抛运动、圆周运动 3.理解天体问题的处理方法 4.理解人造卫星的运动规律【知识网络】一、曲线运动 教育资源 教育资源 二、万有引力定律 曲线运动的方向:轨迹上某点切线方向 曲线运动的条件:合外力与速度方向不共线 曲线运动的性质:是变速运动,具有加速度 曲线运动的性质 对运动以及相应的位移、速度和加速度 进行合成或分解 运动合成与分解的内容 矢量合成与分解的平行四边形法则 运动合成或分解的法则 合运动与分运动等效性 将运动合成或分解的依据 等效性 同时性 独立性 合运动与分运动的关系 曲线运动的
2、处理方法(运动的合成与分解)斜抛运动 斜上抛:初速度方向与重力方向成钝角 斜下抛:初速度方向与重力方向成锐角 处理方法:与平抛运动的分解方法类似 匀变速曲线运动 平抛运动定义:平抛运动的条件:只受重力,初速度与重力方向垂直 平抛运动的分解方法:水平方向匀速,竖直方向自由落体。平抛运动的规律:0 xv t 0 xvv 212ygt yvgt 平抛运动 22Sxy 22xyvvv tanyx 0tanyvv tan2tan 2ytg与 v0无关 002hxvvg 轨迹是抛物线 2202gyxv 匀速圆周运动 条件:合外力大小不变,方向总是垂直于速度的方向 描写的物理量及关系:2lrvtT 2QtT
3、 vr 22224FvrQrrTm分力学方程:22224vmrFFmammrrT分向向 描写圆周运动的瞬时关系全部成立,如lvt Qt vr 22varr向 Fma向向 遵守的公式 或规律 与匀速圆周运动的不同:向心力 F向是质点 所受合力的一个分量,即 F合F向 变速圆周运动 非匀变速曲线运动(加速度变化)曲线运动的实例 教育资源 教育资源 【要点梳理】要点一、曲线运动及运动的合成与分解 要点诠释:1曲线运动速度的方向(1)速度的方向:质点在某一点的速度,沿曲线在这一点的切线方向。(2)获取途径:其一,生活中的现象如:砂轮边缘飞出的铁屑、雨天车轮甩出的雨滴、弯曲的水管中喷出的水流等;其二,由
4、瞬时速度的定义,瞬时速度等于平均速度在时间间隔趋于零时的极限,从理论上得到曲线运动瞬时速度的方向。(3)曲线运动的性质:速度是矢量,曲线运动的速度时刻在变化,曲线运动一定是变速运动,一定具有加速度,曲线运动受到的合外力一定不等于零。2物体做曲线运动的条件(1)物体做曲线运动条件:当物体受到的合外力与它的速度方向不在同一条直线上时,物体做曲线运动。如人造地球卫星绕地球运行时,它受到的地球的吸引力与它的速度方向不在一条直线上(Fv引),所以卫星做曲线(圆周)运动。(2)物体做直线运动条件:当物体受到的合外力与速度的方向在一条直线上或者物体受到的合外力为零时,物体做直线运动。(3)物体在运动中合外力
5、切向分量和法向分量的作用:切向分量:改变速度的大小当合外力的切向分量与速度的方向相同时,物体做加速曲线运动,相反时做减速曲线运动。法向分量:改变速度的方向只有使物体偏离原来运动方向的效果,不能改变速度的大小。(4)曲线运动条件的获得途径:其一,由实际的曲线运动的受力情况可以知道;其二,通过理性分析可以得知,如在垂直于运动的方向上物体受到了合外力的作用,物体的运动方向便失去了对称性,必然向着受力的方向偏转而成为曲线运动。3曲线运动轨迹的确定 轨道定律 速度定律 周期定律 开普勒定律 发现过程:地面力学规律向天体推广 定律内容:122m mFGr(两质点之间)定律验证:月地检验,预期哈雷彗星等 万
6、有引力定律 测量天体的质量和密度 发现未知天体 掌握行星、卫星的运动规律 万有引力定律的应用 第一宇宙速度:v1=7.9 km/s 意义 第二宇宙速度:v2=11.2 km/s 意义 第三宇宙速度:v3=16.7 km/s 意义 三个宇宙速度 根据万有引力定律 计算常用公式 222224GMmmvmrmrrrT,2GMmmgR地地 教育资源 教育资源 (1)已知 x、y 两个分运动,求质点的运动轨迹;只要写出 x、y 两个方向的位移时间关系 xx t和 yy t,由此消除时间 t,得到轨迹方程 yf x,便知道轨迹是什么形状。例如质点在 x、y 方向上都做匀速直线运动,其速度分别是 vx、vy
7、,求其运动的轨迹方程。第一:写位移方程xyxv tyv t、x;第二:消时间 t 得到轨迹方程yxvyxkxv;可见两个匀速直线运动的合运动的轨迹仍然是直线。(2)定性的判断两个分运动的合运动的轨迹是直线还是曲线:由曲线运动的条件知,只要看质点的初速度方向和它受到的合外力的方向是否共线便知。4合运动与分运动、分运动与分运动之间的关系 等时性:质点所做的各个分运动在同一时间里完成,各个分运动也当然的和合运动在同一时间里完成,也就是说,在一个具体问题的某一过程中,由一个分运动求得的时间和由合运动求得的时间是相同的。等效性:各个分运动合成后的综合效果与合运动的效果是完全相同的,否则运动的合成和分解便
8、失去了意义。独立性:同时参与的各个分运动是互相独立、互不影响的,即每一个方向上的运动仅由这一方向质点的受力情况和初始条件决定。要点二、抛体运动 要点诠释:1抛体运动的分类和性质(1)性质:抛体运动是匀变速运动,因为它受到恒定的重力 mg 作用,其加速度是恒定的重力加速度 g。(2)按初速度的方向抛体运动可以分为:竖直上抛:初速度 v0竖直向上,与重力方向相反,物体做匀减速直线运动;竖直下抛:初速度 v0竖直向下,与重力方向相同,物体做匀加速直线运动;斜上抛:初速度 v0的方向与重力的方向成钝角,物体做匀变速曲线运动;斜下抛:初速度 v0的方向与重力的方向成锐角,物体做匀变速曲线运动;平抛:初速
9、度 v0的方向与重力的方向成直角,即物体以水平速度抛出,物体做匀变速曲线运动;(3)匀变速曲线运动的处理方法:以解决问题方便为原则,建立合适的坐标系,将曲线运动分解为两个方向的匀变速直线运动或者分解为一个方向的匀速直线运动和另一个方向的匀变速直线运动加以解决。2平抛运动的规律(按水平和竖直两个方向分解可得)水平方向:不受外力,以 v0为速度的匀速直线运动:0 x0 xv tvv,竖直方向:竖直方向只受重力且初速度为零,做自由落体运动212ygt,yvgt 平抛运动的轨迹:是一条抛物线2202gyxv 合速度:大小:22xyvvv 即220()vvgt,教育资源 教育资源 方向:v 与水平方向夹
10、角为10tan()gtv 合位移:大小:22Sxy即22201()()2Sv tgt,方向:S 与水平方向夹角为10tan()2gtv 一个关系:tan2tan,说明了经过一段时间后,物体位移的方向与该时刻合瞬时速度的方向不相同,速度的方向要陡一些。3对平抛运动的研究(1)平抛运动在空中的飞行时间:由竖直方向上的自由落体运动212ygt得到,飞行时间2ytg。由抛出点到落地点的竖直距离和该地的重力加速度决定,抛出点越高或者该地的重力加速度越小,物体飞行的时间就越长,与抛出速度的大小无关。(2)平抛运动的射程 由平抛运动的轨迹方程2202gyxv可以写出其水平射程02yxvg 可见,在 g 一定
11、的情况下,平抛运动的射程与初速度成正比,与抛出点高度的平方根成正比,即抛出的速度越大、抛出点到落地点的高度越大时,射程也越大。(3)平抛运动轨迹的研究 平抛运动的抛出速度越大时,抛物线的开口就越大。平抛运动实验探究的构思和方案 实验构思:对比实验法:即将平抛运动和自由落体同时进行,对比试验;将平抛运动和水平方向上的匀速运动对比试验;实验方案:a、频闪照相法:在对比实验的过程中,每间隔相等的时间对同时进行的两个运动物体拍照,记录下物体的位置进行研究,寻求运动的规律。b、碰撞留迹法:通过碰撞法留下运动物体不同时刻的位置,描出物体的运动轨迹进行研究。要点三、描写圆周运动的物理量 要点诠释:1圆周运动
12、的线速度(1)线速度 v 的定义:圆周运动中,物体通过的弧长与所用时间的比值,通常把这个比值称为圆周运动的线速度。(2)公式:lvt 单位:m/s 方向:沿着圆周各点的切线方向 说明:线速度是指物体作圆周运动时的瞬时速度。线速度的方向就是在圆周某点的切线方向。线速度的大小是lt的比值。所以 v 是矢量。教育资源 教育资源 匀速圆周运动是一个线速度大小不变的圆周运动。线速度的定义式lvt,无论是对于变速圆周运动还是匀速圆周运动都成立,在变速圆周运动中,只要 t取得足够小,公式计算的结果就是瞬时线速度。注:匀速圆周运动中的“匀速”二字的含义:仅指速度大小不变,但速度的方向(曲线上某点的切线方向)时
13、刻在变化。2描写圆周运动的角速度(1)角速度的定义:圆周运动物体与圆心的连线扫过的角度与所用时间t的比值叫做角速度。(2)公式:t 单位:rad/s(弧度每秒)说明:这里的必须是弧度制的角。对于匀速圆周运动来说,t这个比值是恒定的,即匀速圆周运动是角速度保持不变的圆周运动。角速度的定义式t,无论是对于变速圆周运动还是匀速圆周运动都成立,在变速圆周运动中,只要 t取得足够小,公式计算的结果就是瞬时角速度。关于 的方向:中学阶段不研究。同一个转动的物体上,各点的角速度相等。例如:木棒 OA 以它上面的一点 O 为轴匀速转动时,它上面各点(各点与圆心 O 点的连线)的角速度相等。即:ABC 3线速度
14、和角速度的关系:(1)关系:vr vr(2)对于线速度与角速度关系的理解:是一种瞬时对应关系,即某一时刻的速度与这一时刻的角速度的关系,适应于匀速圆周运动和变速圆周运动。4向心加速度(1)向心加速度产生的原因:向心加速度由物体所受到向心力产生,根据牛顿第二定律知道,其大小由向心力的大小和物体的质量决定。(2)向心加速度大小的计算方法:由牛顿第二定律计算:Fam向;由运动学公式计算:22varr。(3)对向心加速度的认识 向心加速度 a 的方向:沿着半径指向圆心,是一个变量。向心加速度的意义:在一个半径一定的圆周运动中,向心加速度描述的是线速度方向改变的快慢。从运动学上看:速度方向时刻在发生变化
15、,总是有v0必然有向心加速度;从动力学上看:沿着半径方向上指向圆心的合外力必然产生指向圆心的向心加速度。要点四、关于向心力 O C B A 教育资源 教育资源 要点诠释:1向心力的概念(1)向心力的定义:在圆周运动中,物体受到的合力在沿着半径方向上的分量叫做向心力。向心力的作用:是改变线速度的方向产生向心加速度的原因。向心力的大小:22vFmammrr向向,向心力的大小等于物体的质量和向心加速度的乘积;确定的物体在半径一定的情况下,向心力的大小正比于线速度的平方,也正比于角速度的平方;线速度一定时,向心力反比于圆周运动的半径;角速度一定时,向心力正比于圆周运动的半径。向心力的方向:与速度方向垂
16、直,沿半径指向圆心。(2)关于向心力的说明:向心力是按效果命名的,它不是某种性质的力 匀速圆周运动中的向心力始终垂直于物体运动的速度方向,所以它只能改变物体的速度方向,不能改变速度的大小。无论是匀速圆周运动还是变速圆周运动,向心力总是变力,但是在匀速圆周运动中向心力的大小是不变的,仅方向不断变化。2向心力的来源 向心力不是一种特殊的力。重力(引力)、弹力、摩擦力等每一种力以及这些力的合力或分力都可以作为向心力。3从向心力看匀速圆周运动和变速圆周运动(1)匀速圆周运动的向心力大小不变,由物体所受到的合外力完全提供,换言之物体受到的合外力完全充当向心力的角色。例如月球围绕地球做匀速圆周运动,它受到
17、的地球对它的引力就是合外力,这个合外力正好沿着半径指向地心,完全用来提供月球围绕地球做匀速圆周运动的向心力。(2)在变速圆周运动中,向心力只是物体受到的合外力的沿着半径方向的一个分量。(3)匀速圆周运动和变速圆周运动所适用的共同规律 无论是匀速圆周运动还是变速圆周运动向心加速度的大小冲是:22Fvarmr向向(公式中的每一个量都是瞬时量,任何一个时刻或者任何一个位置都可以用公式计算向心加速度。)换 一 种 说 法 就 是,在 圆 周 运 动 中 的 任 何 时 刻 或 位 置,牛 顿 运 动 定 律 都 成 立。即22vFmammrr向向。4关于离心现象 外力提供的向心力和做圆周运动需要的向心
18、力之间的关系对物体运动的影响(1)外力提供的向心力:是某个力、几个力的合力或者是合力在半径方向上的分量,是实实在在的相互作用。(2)做圆周运动需要的向心力:是指在半径为 r 的圆周上以速度 v 运动时,必须要这么大的一个力,才能满足速度方向改变的要求。(3)供需关系对物体运动的影响:外力提供的向心力等于物体做圆周运动需要的向心力时,物体做圆周运动;外力提供的向心力小于物体做圆周运动需要的向心力时,物体做远离圆心的运动离心运动;外力提供的向心力大于物体做圆周运动需要的向心力时,物体做靠近圆心的运动也可称之为向心运动。要点五、万有引力定律 教育资源 教育资源 要点诠释:1物体的重力随离地面高度 h
19、 的变化情况 物体的重力近似为地球对物体的引力,即近似等于2()MmGRh,可见物体重力随 h 的增大而减小。2地球附近和其它天体表面的重力加速度(1)地球表面的重力加速度 地球表面的重力加速度。由于自转而导致重力的变化是很微小的,因而在一般的情况下,常忽略地球自转的影响,此时物体所受的重力大小就等于万有引力的大小,因此,若地球表面的重力加速度为 g0,则根据万有引力定律可得020GMgR(R0为地球的半径)。离地面高 h 处的重力加速度,根据万有引力 定律,有20()GMgRh(R0为地球的半径)(2)天体表面重力加速度问题 设天体表面重力加速度为 g,天体半径为 R,由2MmmgGR得2G
20、MgR。由此推得两个不同天体表面重力加速度的关系为 星球表面的重力加速度既可从它与星球的关系2GMgR求出,又可以从它与运动的关系(平抛运动、自由落体运动、竖直向上抛运动等)中求出,重力加速度是运动学和万有引力、天体运动联系的纽带。3求天体的质量、密度 通过观察天体做匀速圆周运动的卫星的周期 T、半径 r,由万有引力等于向心力即2224MmGmrrT,得天体质量 2324rMGT。(1)若知道天体的半径 R,则天体的密度(2)若天体的卫星环绕天体表面运动,其轨道半径 r 等于天体半径 R,其周期为 T,则天体密度23GT。4地球卫星(1)一般做匀速圆周的卫星 遵循的规律是:222224GMmm
21、vmrmrrrT 运动规律:线速度、角速度、向心加速度、周期等只取决于中心天体的质量 M 和轨道半径 r。半径越大,线速度、角速度、向心加速度都变小,周期变大。(2)地球同步卫星 所谓地球同步卫星,是相对于地面静止的和地球自转具有相同周期的卫星,T=24 h。同步卫星必须位于赤道正上方距地面高度 h3.6104 km 处。5三种宇宙速度(1)第一宇宙速度(环绕速度)v1=7.9 km/s,是人造地球卫星的最小发射速度。(2)第二宇宙速度(脱离速度)v2=11.2 km/s,使物体挣脱地球引力束缚的最小发射速度。教育资源 教育资源 (3)第三宇宙速度(逃逸速度)v3=16.7 km/s,使物体挣
22、脱太阳引力束缚的最小发射速度。6解决天体运动问题的方法(1)若卫星或天体沿椭圆轨道运行时,通常由开普勒三定律结合万有引力定律、牛顿运动定律及能量守恒定律解决。(2)若卫星做匀速圆周运动,解题通常由222224GMmmvmrmrrrT和代换关系2GMmmgR解决。(3)解决天体运动问题要重视形成运动情景,理解运动的本质。【典型例题】类型一、对曲线运动的性质和条件的理解 例 1如图,一质点做加速曲线运动从 M 点到 N 点,当它经过 P 点时,其速度 v 和加速度 a 的方向关系正确的是()【思路点拨】准确的理解质点从 M 点到 N 点做加速、曲线运动是解题的关键和突破口。【答案】C【解析】物体从
23、 M 到 N 做加速运动,说明 a 的切向分量与 v 同向,曲线运动的合外力一定指向曲线凹的一侧,其加速度也一定指向曲线凹的一侧,所以正确答案 C。【总结升华】做曲线运动的物体所受到合力的切向分量和法向分量起着改变速度的大小和方向的作用。合力的大小不可能指向曲线凸的一侧。类型二、运动的合成与分解在实际问题中的运用 例 2玻璃生产线上,宽 9 m 的成型玻璃板以 2 m/s 的速度连续不断地向前行进,在切割工序处,金刚石刀的走刀速度是 10 m/s,为了使割下的玻璃板都成规定尺寸的矩形,金刚石刀的切割轨道如何控制?切割一次的时间有多长?【思路点拨】分析要使得割出的玻璃板是矩形,金刚石刀应当同时参
24、与哪两个运动。【解析】金刚石刀必须在玻璃板运动的方向上与玻璃板具有相同的速度 v1=2 m/s,同时还要有垂直于玻璃板运动的方向上的速度 v2,刀的实际速度 v=10 m/s 就是这两个速度的合成,如图所示:所以金刚石到走刀方向与玻璃板的速度方向所成的角 切割一次用的时间:20.9ssinddtvv【总结升华】金刚石刀相对于玻璃只有垂直方向的速度时才能割出矩形。类型三、对平抛运动的理解 例 3关于物体的平抛运动,下列说法正确的是()A由于物体受力的大小和方向不变,因此平抛运动是匀变速运动 B由于物体的速度方向不断变化,因此平抛运动不是匀变速运动 C物体运动时间只由抛出时的高度决定,与初速度无关
25、 D平抛运动的水平距离,由抛出点高度和初速度共同决定【思路点拨】弄清楚平抛运动的受力特点和水平方向、竖直方向的具体运动情况,是回答问题的关键。【答案】ACD【解析】平抛运动受到恒定的重力作用,做匀变速运动,选项 A 正确;由平抛运动的规律知,物体运动时间是2ytg只由抛出时的高度决定,与初速度无关,C 选项正确;平抛的水平距离02yxvg,v2 v1 v 教育资源 教育资源 即抛出的速度越大、抛出点到落地点的竖直距离越大时,射程也越大,D 选项正确。【总结升华】重视理性思维,不能想当然的认为曲线运动就不是匀变速运动,平抛的初速度越大时物体运动的时间就越长。举一反三【变式 1】一水平抛出的小球落
26、到一倾角为 的斜面上时,其速度方向与斜面垂直,运动轨迹如右图中虚线所示。小球在竖直方向下落的距离与在水平方向通过的距离之比为()【答案】D【变式 2】在同一高处有两个小球同时开始运动,一个以水平初速抛出,另一个自由落下,在它们运动过程中的每一时刻,有()A加速度不同,速度相同 B加速度相同,速度不同 C下落的高度相同,位移不同 D下落的高度不同,位移不同【思路点拨】弄清平抛运动和自由落体运动的区别和联系是正确回答问题的关键。【答案】C【解析】平抛运动和自由落体运动的受力情况是相同的,它们的加速度是相同的;不同的是平抛运动同时参入了两个分运动,速度和位移分别是相应的两个分速度和分位移的合成,因此
27、,经过相同的时间后它们的速度和位移是不同的。类型四、平抛运动的计算极值问题 例 4如图所示,AB 为斜面,倾角为 30,小球从 A 点以初速度 v0水平抛出,恰好落到 B 点,求出小球与斜面的最远距离 H。【思路点拨】利用平抛运动的一个结论:平抛运动的物体在任意位置(x,y)处速度方向的反向延长线与 x 轴交于(,0)2x处。【答案】20tansin2vHg【解析】如图所示,当小球离斜面最远时,速度方向与斜面平行,则 x=v0t,小球与斜面最远距离sin2xH,结合0tangtv解得20tansin2vHg。【总结升华】本题也可以采用将平抛运动分解为平行于斜面的运动和垂直于斜面的两个运动进行求
28、解,进一步加深对运动合成、分解的理解。类型五、平抛运动的计算临界问题 例 5如图所示,女排比赛时,排球场总长是 18 m,设球网高度是 2 m,运动员站在网前 3 m 处正对球网跳起将球水平击出。求击球的高度不小于多少时,才能将排球平击在对方场地?y O x H vy vx(x,y)(2x,0)v 教育资源 教育资源 【思路点拨】设想在某一高度 h 处用某一速度 v0将球水平击出,排球擦网而过且恰好落在边界上。在此临界状态下进行动态分析:若击球速度略小,则球触网;若击球速度稍大则球出界,所以此高度 h 就是水平击球的最小高度。【答案】2.13 m【解析】由临界状态找出临界条件,由平抛运动规律列
29、方程(1)擦网 2112hHg t 101Sv t(2)落边界 2212hg t 202Sv t 解得 h=2.13 m 故击球的高度不得小于 2.13 m。举一反三【变式】小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为 m 的小球,甩动手腕,使球在竖直平面内做圆周运动。当球某次运动到最低点时,绳突然断掉,球飞行水平距离 d 后落地。如图所示。已知握绳的手离地面高度为 d,手与球之间的绳长为3d4,重力加速度为 g。忽略手的运动半径和空气阻力。(1)求绳断时球的速度大小 v1和球落地时的速度大小 v2。(2)求绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在
30、球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应是多少?最大水平距离为多少?【思路点拨】将文字形成正确的物理情景是解决物理问题的一个关键。【解析】(1)在绳断后球飞行时间为 t,由平抛运动规律,(2)设绳子承受的最大拉力为 T,这也是球受到绳的最大拉力,球做圆周运动的半径3Rd4 由向心力公式 21vTm gmR 113Tmg(3)设绳长为 l,绳断时球的速度大 小为 v,绳承受的最大拉力不变,有 23T-mg=vl 得383vgl 绳断后球做平抛运动,竖直位移为dl,水平位移为 x,时间为 t1,有2112dlgt H h S1 S2 教育资源 教育资源 3 1xv t 得 ()3l
31、dlx 当2dl 时,x 有极大值max2 3x3【总结升华】(1)将文字形成正确的物理情景是解决物理问题的一个关键。(2)应用数学方法求解物理题中的极值问题也是常用的方法。类型六、线速度、角速度、向心加速度大小的比较和计算 例 6如图所示,定滑轮的半径 r=2 cm,绕在滑轮上的细线悬挂着一个重物,由静止开始释放,测得重物以加速度 a=2 m/s2做匀加速运动。在重物由静止下落距离为 1 m 的瞬间,滑轮边缘上的点的角速度 多大?向心加速度 a 多大?【思路点拨】物体的速度时刻等于轮缘上一点的线速度,求出物体下落 1 m 时的瞬时速度,然后利用角速度、向心加速度和线速度的关系可以求解。【解析
32、】(1)重物下落 1 m 时,瞬时速度为:222 12m/svas 显然,滑轮边缘上每一点的线速度也都是 2 m/s,故滑轮转动的角速度,即滑轮边缘上每一点的转动角速度为:2100(rad/s)0.02vr (2)向心加速度为:000 0002222ar1.2 m/s2 m/s【总结升华】此题讨论的是变速运动问题,重物落下的过程中滑轮转动的角速度,轮上各点的线速度都在不断增加,但在任何时刻角速度与线速度的关系(v=r),向心加速度与角速度、线速度的关系22vaRR仍然成立。类型七、水平面上在静摩擦力作用下的圆周运动 例 7如图,在水平转台上放一质量为 M 的木块,木块与转台间的最大静摩擦系数为
33、 ,它通过细绳与另一木块 m 相连。转台以角速度 转动,M 与转台能保持相对静止,它到转台中心的最大距离 R1和最小距离 R2多大?【解析】假设转台光滑,M 与转台保持相对静止的距离中心半径 R0,M 受绳子拉力 T,平台支持力 N。保持静止。T=mg 对 M,T=M2R0 即:mg=M2R0 02mgRM 讨论:(1)若 R 为最小值 R1时,(R1R0)M 有向圆心运动趋势,故转台对 M 有背离圆心的静摩擦力,大小为 fm=Mg。对 m 仍有 T=mg mgMg=M2R2(2)若 R 为最大值 R1时,(R1R0)M 有离心运动趋势,故转台对 M 有指向圆心,大小为 fm的静摩擦力 T+f
34、m=M2R1 类型八、圆周运动综合问题 例 8如图甲所示,已知绳长0.2l 米,水平杆长 L=0.1 米,小球 m 的质量 m=0.3 千克,整个装置可绕竖直轴转动,当该装置以某一角速度转动时,绳子与竖直方向成 30 角。(1)试求该装置转动的角速度;M T f 教育资源 教育资源 (2)此时绳的张力是多大?【思路点拨】此题实质上是一个圆锥摆变形问题,按照动力学问题的常规解法,注意弄清轨道平面、圆心位置,并找出圆周运动的半径,问题得到解决。【解析】当整个装置以角速度 转动时,小球 m 将做圆周运动,圆周运动的圆心在竖直轴上,且和m 在同一水平面上。小球 m 只受到两上力的作用,重力 G=mg,
35、及绳子的拉力 F。而这两个力的合力即为小球所受到的向心力 Fn。解法一:用正交分解法和公式 Fn=man可得 Fsin=m2r Fcosmg=0 由几何知识可得,r=L+lsin,把已知数据代入得 解之得 =5.37 rad/s F=3.46 N 解法二:此题中,m 只受两个力的作用,所以用平行四边形法则解也很方便。由上面的分析已知,物体受竖直向下的重力。大小为 mg 受绳的拉力 F 作用。只知道它的方向与竖直方向夹角 ,又因为小球 m 在水平面内做匀速圆周运动,所以受到水平向左(指向圆心)的合外力,即上述重力和拉力的合力水平向左。由这四个已知(mg 的大小、方向、F 的方向及 Fn的方向)可
36、得图乙的平行四边形。解这个平行四边形可得 又根据牛顿第二定律 2nnFmamr 且 2LrL 【总结升华】(1)牛顿第二定律是解圆周运动的重要依据,对做圆周运动的物体进行受力分析就是必不可少的了。因此我们在解圆周运动问题时,几乎无一例外地要首先画草图对物体进行受力分析。(2)在圆周运动中,向心力的方向往往为已知,而这个已知条件在受力分析中充当重要角色。在解法一中因为知道合外力(向心力)的方向,在正交分解法中才能列出方向xnFma,0yF。在解法二中,因为知道合外力(向心力)方向,才能得到图乙的平行四边形。类型九、圆周运动的临界问题 例 9如图,光滑圆管轨道 AB 部分平面,BC 部分是处于竖直
37、平面内半径为 R 的半圆,圆管截面半径 r 远小于 R。有一质量为 m,半径比 r 略小的光滑小球以水平初速 v0射入圆管。试分析:在小球从 C 端出来瞬间,对管壁压力有哪几种典型情况,初速 v0各应满足什么条件?【解析】小球从 C 端出来瞬间,对管壁压力可以有三种典型情况:刚好对管壁无压力,此时重力恰好充当向心力,得2CmvmgR,由机械能守恒定律22011222CmvmgRmv,联立解得05vgR。对下管壁有压力,此时应有20CvmgmR,此时相应的入射速度 v0应满足045gRvgR。对上管壁有压力,此时应用2CvmgmR,此时相应的入射速度 v0应满足05vgR。【总结升华】掌握无物体
38、支撑与有物体支撑的小球在竖直平面内的圆周运动的问题分析方法的不同。类型十、万有引力与重力的关系 例 10太空中有一颗绕恒星做匀速圆周运动的行星,此行星上一昼夜的时间是 6 h。在行星的赤道处用弹簧秤测量物体的重力的读数比在两极时测量的读数小 10%,已知引力常量 G=6.67 1011 N m/kg2,求此行星的平均密度。【分析】物体在两极只受到两个力重力和弹簧的拉力作用,而处于平衡状态,根据共点力平衡条教育资源 教育资源 件可得 被称物体在赤道处时,受到万有引力和拉力作用,绕地心做匀速圆周运动的向心力就等于万有引力与拉力的合力,则有 根据题意可知 F2=(110%)F1 解式可得23240R
39、MGT,则此行星的平均密度为【总结升华】(1)在行星(或地球)上的物体随行星(或地球)自转所需要的向心力是由万有引力提供的,向心力是万有引力的一个分力,另一个分力使物体压紧地面或拉紧悬线,这个分力就是重力。(2)在行星的两极处的物体,由于随行星自转所需要的向心力为零,故万有引力等于其重力。(3)在赤道处的物体,随行星自转所需的向心力最大,此时,万有引力的另一个分力重力最小,且由于万有引力、重力和向心力同向,则三个力满足FFF万重向,即22MmGmgmRR。式中 为行星自转的角速度。由此可知,越大,重力 mg 会越小,当 大到一定值 0时,会有202MmGmRR,这时物体的重力为零,对赤道表面无
40、压力。当 0时,22MmGmRR,赤道处的物体会被甩出,这时,行星将解体。类型十一、用万有引力定律测天体重量 例 11把地球绕太阳公转看作匀速圆周运动,轨道平均半径约为 1.5 108 km,已知万有引力常量G=6.67 1011 N m2/kg2,则可估算出太阳的质量大约是多少千克?(结果取一位有效数字)【解析】题干给出地球轨道半径 r=1.5 108 km,虽没直接给出地球运转周期的数值,但日常知识告诉我们,地球绕太阳公转一周为 365 天,故周期 T=365 24 3600 s=3.2 107 s。万有引力提供向心力,即 222MmGmrrT,故太阳质量 2324rMGT21 131 1
41、7243.1 4(1.51 0)kg6.67 10(3.2 10)302 10 kg 【总结升华】在一些天体运动方面的估算题中,常存在一些隐含条件,应加以利用。如在地球表面物体受到地球的引力近似等于其重力。地面附近的重力加速度 g=9.8 m/s2;地球自转周期 T=24 h,公转周期 T=365 天;月球绕地球运动的周期约为 27 天等。本方法利用卫星运动的有关参量(如 r、T),求出的质量 M 是中心天体的,而不是卫星本身的质量m,同学们应切记这一点。本题要求结果保留一位有效数字,有效数字运算规则告诉我们:在代入数据运算时,只要按四舍五入的方法代入两位(比要求多保留一位)有效数字即可,这样
42、可避免无意义的冗长计算,最后在运算结果中,再按四舍五入保留到所要求的一位即可,望同学们体会运用。类型十二、综合运用牛顿运动定律、万有引力定律和匀速圆周运动知识求解天体运动问题 例 12 已知地球半径 R=6.4 106 m,地面附近重力加速度 g=9.8 m/s2,计算在距离地面高为 h=2.0 106 m 的圆形轨道上的卫星做匀速圆周的线速度 v 和周期 T。【解析】根据万有引力提供卫星做圆周运动的向心力22()MmvGmRhRh求解。卫星做匀速圆周运动的向心力由它与地球间的万有引力提供,即22()MmvGmRhRh,知教育资源 教育资源 GMvRh 由地球表面附近万有引力近似等于重力,即2
43、MmGmgR得 GM=gR2 由两式可得 运动周期2()RhTv66332 3.14(6.4 102.0 10)s7.6 10 s6.9 10。【总结升华】在已知地球半径和地面附近重力加速度的情况下,可以使用变换公式 GM=gR2,使计算变得简单,称其为“黄金代换”。举一反三 【变式 1】1970 年 4 月 24 日,我国自行设计、制造的第一颗人造地球卫星“东红一号”发射成功,开创了我国航天事业的新纪元。“东方红一号”的运行轨道为椭圆轨道,其近地点 M 和远地点 N 的高度分别为439km 和 2384km,则()A卫星在 M 点的势能大于 N 点的势能 B卫星在 M 点的角速度大于 N 点
44、的角速度 C卫星在 M 点的加速度大于 N 点的加速度 D卫星在 N 点的速度大于 7.9km/s 【答案】BC 【变式 2】某星球直径为 d,宇航员在该星球表面以初速度0v竖直上抛一个物体,物体上升的最大高度为 h,若物体只受该星球引力作用,则该星球的第一宇宙速度为()【答案】D【思路点拨】以初速度0v竖直上抛一物体,物体在重力作用下做匀减速直线运动,当物体速度减为 0 时,物体上升到最大高度,已知初速度末速度和位移,根据匀变速直线运动的速度位移关系可以求出该星球表面的重力加速度 g,再根据万有引力提供向心力,求出该星球的第一宇宙速度 【解析】在该星球表面以初速度 v0竖直上抛出一物体,则该
45、物体上升的最大高度为 H 由ghv220,得:hvg220,根据Rvmmg20,而2dR,得该星球的第一宇宙速度为:hdvgRv20,故 D 正确,ABC 错误;类型十三、卫星变轨问题 例 13 如图所示是嫦娥三号奔月过程中某阶段的运动示意图,嫦娥三号沿椭圆轨道运动到近月点P处变轨进入圆轨道,嫦娥三号在圆轨道做圆周运动的轨道半径为r,周期为T,已知引力常量为G,下列说法中正确的是()教育资源 教育资源 A由题中(含图中)信息可求得月球的质量 B由题中(含图中)信息可求得月球第一宇宙速度 C嫦娥三号在P处变轨时必须点火加速 D嫦娥三号沿椭圈轨道运动到 P 处时的加速度大于沿圆轨道运动到P处时的加
46、速度【答案】A【解析】A、万有引力提供向心力:2224MmGmrrT,得:2324rMGT,既根据轨道半径为r,周期为T,万有引力常量为G,计算出月球的质量,故 A 正确;B、万有引力提供向心力:22MmvGmrr,得:GMvr,此处的 r 指的是月球的半径,而不是嫦娥三号运行的轨道半径,所以由于不知道月球半径,所以不能计算月球第一宇宙速度,故 B 错误;C、椭圆轨道和圆轨道是不同的轨道,航天飞机不可能自主改变轨道,只有在减速后,做近心运动,才能进入圆轨道,故 C 错误;D、嫦娥三号沿椭圈轨道运动到 P 处时和沿圆轨道运动到P处时,所受万有引力大小相等,所以加速度大小也相等,故 D 错误。【总结升华】注意在求解月球的“第一宇宙速度时”,GMvr,r 指的是月球的半径,而不是嫦娥三号运行的轨道半径。