学士学位论文--35kv变电站防雷接地技术.doc

上传人:教**** 文档编号:93041085 上传时间:2023-06-22 格式:DOC 页数:28 大小:218.50KB
返回 下载 相关 举报
学士学位论文--35kv变电站防雷接地技术.doc_第1页
第1页 / 共28页
学士学位论文--35kv变电站防雷接地技术.doc_第2页
第2页 / 共28页
点击查看更多>>
资源描述

《学士学位论文--35kv变电站防雷接地技术.doc》由会员分享,可在线阅读,更多相关《学士学位论文--35kv变电站防雷接地技术.doc(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、大连理工大学网络教育学院毕业论文(设计)模板 网络教育学院本 科 生 毕 业 论 文(设 计) 题 目: 变电站防雷接地技术 学习中心: 层 次: 专科起点本科 专 业: 年 级: 年 春/秋 季 学 号: 学 生: 指导教师: 完成日期: 年 月 日II变电站防雷接地技术内容摘要变电站是电力系统中对电能的电压和电流进行变换、集中和分配的场所,是联系发电厂与电力用户的纽带,担负着电压变换和电能分配的重要任务。如果变电所发生雷击事故,会给国家和人民造成巨大的损失。所以变电所的防雷是不可忽视的问题。随着电力系统的快速发展,使得电能这一清洁能源在人民生产、生活中得到了普遍使用。但当高压输电网在为人们

2、提供动力和照明时,不能忽视自然界产生的雷电对高压输变电设备产生的大量危害。因此,必须加强变电站防雷接地问题的认识与研究。本论文针对目前变电站设备中防雷接地技术的中存在的问题,针对35KV变电站进行防雷接地保护设计;根据变电站国家防雷接地标准,结合35KV变电站电气接线图以及具体情况,学习利用各种防雷接地装置等,实现对变电站的直击雷防护、雷电侵入波防护以及变电站的接地保护设计。关键词:变电站;防雷接地;直击雷防护;雷电侵入波防护目 录内容摘要I1 绪论11.1 变电站防雷接地的意义11.2 变电站防雷接地的研究背景11.3 本次论文的主要工作42 变电站的防雷保护62.1 变电站的直击雷保护82

3、.2 变电站的侵入波保护112.3 变电站的进线段保护122.4 避雷针与避雷线的保护范围的计算143 变电站的防雷接地163.1 接地概述163.2 接地电阻173.3 变电所接地装置183.4 变电站的接地原则183.5 降低变电所接地装置工频接地电阻的措施184 变电所防雷接地设计实例204.1 变电所的规模204.2 变电所位置的自然条件204.3 避雷针的设置及防雷保护校验214.4 接地装置的设置225 结论24参考文献25附 录261 绪论1.1 变电站防雷接地的意义雷电是大自然中最宏伟但又最恐怖的气体放电现象。对雷电的物理本质了解开始于18世纪,最有名的当属美国的富兰克林和俄国

4、的罗蒙索诺夫。富兰克林在18世纪中期提出了雷电是大气中的火花放电,且首次阐述了避雷针的原理并进行了试验。近几十年来,由于雷电放电对于现代航空、电力、通信、建筑等领域都有很大的影响,促使人们从20世纪30年代开始加强了对雷电及其防护技术的研究。变电站是电力系统的重要组成部分,变电站发生雷击事故,将造成大面积停电,会对电网造成较大的危害。近年来,随着我国电力变电站实现综合自动化,不仅为变电站实现无人值守和配电网实现自动化奠定了基础,而且也为供电部门提供更安全、经济、可靠和高质量的电能创造了条件,这就更加要求防雷接地措施必须十分可靠。因此,在变电站的设计过程中,保护变电站的设备安全,提高其供电可靠性

5、,优化防雷接地设计方案,加强变电站的防雷接地安全措施,最大程度的减少雷击事故发生,有着极其重要的意义。1.2 变电站防雷接地的研究背景在我国有过许多的遭受雷击的危害事故。1981年8月27日,江苏省常州市某微波站遭到雷击,电力载波204、102电路终端机报警整流器的3只整流二极管被击穿;铅皮电缆外皮与地网接触处烧出凹坑;微波设备回路机的4线收发信号衰耗器烧坏,致使南京方向的7、8、11路电话中断,上海方向的第7路不通。 1983年9月西南某工程遭受一次雷击,使配套的一批电子设备损坏,系统工作无法进行,损坏的电子设备和元件有:数字传输机损坏集成电路芯片20多块;通信系统8台机中有6台受到不同程度

6、的损坏;时控单元脉冲处理回路和脉冲变换电路4块芯片损坏;遥测系统由于连接电缆较长,损坏电路板3块。 华中大电网有微波站近百个,其中进口设备站65个。事故统计表明,造成设备损坏、导致长时间通信中断的主要原因就是雷害。武-衡线段的15个微波站12个曾遭受雷击影响正常通信,甚至损坏多台设备。 1987年8月1日三门峡站受雷击损坏16台装置柜。 1989年8月30日有5个站遭雷击损坏11块电路盘,通信中断17小时。 1990年9月27日黑龙江省电力局调度大楼遭受雷击,使调度自动化的计算机系统和程控交换设备损坏停止运行27小时。其中,程控交换机损坏电路板8块,VAX 计算机接口板损坏,远动室调度模拟盘

7、43 块显示消失,PDP-11/24型计算机系统的PMA接口板损坏,内存损坏8块。 1992年6月22日傍晚,北京城区下了一阵中雨。8时左右,雷电击中国国家气象中心大楼楼顶,楼内的大型计算机与小型计算机网络瘫痪,6条同步线路和1条国际同步线路被中断。整个计算机系统停止工作46小时,气象业务受到严重影响,损失数十万元,次日中央电视台气象预报空白。因为大楼装有避雷针,使闪电由避雷针引入大地,所以大楼、人员及普通设备安然无恙,但是雷电流在四周产生的巨大脉冲电磁场,却损坏了具有极为敏感的微电子器件及计算机系统。 1993年5月17日和6月3日,雷击广西人民银行证券中心,击坏计算机16台,损失11万元。

8、广西南宁市两个专业银行的计算机网络及电信局程控机也同时损坏。 1994年7月5日和17日两天,四川省气象局业务系统连遭雷击,计算机网络、气象雷达、卫星接收系统等电子设备被损坏。 1995年9月3日19时55分到4日21时26分,河南省三门峡市出现强雷雨天气,致使中国工行三门峡市湖滨支行遭受严重雷击,当即击毁计算机16部、内部电话总机1台,直接经济损失15万元。 1996年8月31日,华夏证券公司广州分公司遭雷击,损坏彩色及单色LBE大屏幕设备、交换式集成器、四块电话语音卡、微机设备等,经济损失约28多万元。 1996年6月22日晚9时前后,天空乌云密布,雷声隆隆,忽远忽近。一声巨响之后,北京东

9、直门附近一座居民楼2至6层的20户居民中,15台电视机被强大的雷电击毁;一层办公室中的视盘机、一台触摸式台灯和小型程控电话交换机也被雷击损坏;邻近的一栋楼上,也有数台电话机遭到破坏。据报道,同日西城区展览路也有居民的电视机和单位的电话机遭到雷击。 1997年10月13日吉山珠村化工仓库遭雷击造成严重的火灾爆炸事故,烧毁两座共贮存240吨纯苯的简易仓库,直接经济损失70万元。幸好消防部门扑救及时,不致使爆炸蔓延酿成更大灾害。 1998年7月29日上海市某电子工程有限公司智能大楼遭雷电袭击,楼内安防管理监控报警、对讲系统、6只摄像机、13部电梯的电脑控制程序遭损坏,损失严重。 1999年8月9日,

10、吉林省蛟河发生雷害,天岗地区某单位的通讯设备被雷击毁,当地1000余台电视机和300余部电话出现故障。雷害发生后的36小时内, 远离百里的蛟河市区,市话、手机全停,银行专线无法正常运行,损失严重。相当多的公安机关的专线和军事机关的雷达也受到雷击。 2001年2月21日凌晨,由于大雾闪络造成外部电网对邯郸钢铁股份有限公司电力供应中断,使炼铁、炼钢、轧钢三大系统全面停产,这是公司历史上从未有过的特大事故。由于停电影响,炼铁厂全部高炉断水、断电、断气,不同程度发生灌渣、烧坏冷却设备等事故;炼钢系统导致铁水、钢水落地,部分铁包、钢包损坏;轧钢系统造成部分设备损坏。本次停电事故,给公司生产带来严重影响,

11、初步估计直接经济损失达数千万元。 从以上的雷电事故来看,自二十世纪八十年代以来,我国几乎每年都有由于雷电引起的弱电系统重大事故发生,这也说明对于弱电系统的防雷保护措施还有待加强。因此,对于弱电系统的防雷保护的各项措施还应不断完善。研究现状:当雷电直接击中电力系统的导线部分时,会产生极高的雷电过电压,任何电压等级的设备绝缘都会难以耐受变电站对于直击雷的保护一般采取装设避雷针或采用沿变电站进线段一定距离内架设避雷线,吸引雷电击向自身,减低雷击点的过电压,通过良好接地的装置,将雷电流迅速泄入大地。为了限制入侵雷电波的幅值,在变电站内要求装设避雷器,使电气设备的过电压不致于超过其冲击耐压值在变电站的进

12、线段上装设避雷器,可以限制流经避雷器的雷电流幅值及入侵雷电流的陡度。建筑物防雷设计规范GB50057-94中指出,常规防雷的保护对象主要是保护建筑物免遭直接雷击,防雷保护的措施主要是装设避雷针或避雷网(带),其中避雷针的应用最为普遍,在各类建筑物的顶端一般都布置了避雷针。这种常规的防雷方法已经有两百多年的历史了,而且经过长期实践证明,它对直击雷的防护的确是有效的“但是防雷光靠装设避雷针肯定是不行的,因为避雷针是通过把雷电引到自身来完成其保护范围内的被保护对象免遭直接雷击的。所以在这样的保护过程中会产生较多的负面影响,其中最主要的有:增加雷击概率、产生感应雷以及地电位反击等。避雷针大大增加雷击概

13、率,这使得依附于一次设备的,目前正在大量更新的保护、监控、通信等二次设备遭受雷击的概率大大增加,损坏方式也多种多样,从而给电力生产带来很大的损失。这些二次设备防感应雷基本上靠机壳和内部元件本身,可靠性较低,当雷击使高压线路引入雷电波时,往往影响到变电站的整个低压电源系统通信系统,导致低压电源系统中绝缘薄弱设备的某些元件损坏,如设备的电源模块,计算机监控系统等,一旦被波及往往造成接口元件击穿或烧坏。接地起着维持正常运行、保护、防雷、防干扰等作用。当接地不规范时,雷电电磁脉冲容易引起接地点之间电位差,产生的电磁场干扰二次设备的运行,严重时会损坏设备内部的电子回路。接地电阻不合格,雷电引起的地电位升

14、高,也会通过设备的接地线引入二次设备中,损坏设备的插件。所以,各接地网间必须通过合理布置接地线,等电位连接屏蔽及装置本身的电磁兼容防护来解决设备的安全问题。总之,变电站在高压一次系统的防雷保护措施还是比较完善的。防直击雷有避雷针(带),110kV及以上线路有架空地线保护;35kV线路、10kv线路有线路避雷器保护,变电站还有各级母线变压器的避雷器保护。但在二次系统,由于重视程度不够,防雷措施没有跟上设备的发展,防雷保护措施都不够完善,存在较多的问题和不足。变电站的防雷和接地问题既非常的复杂又至关重要不可或缺,它的好与坏直接对电气系统的设备和人身的安全造成严重的后果。特别是如今随着电力系统的日益

15、发展,电网规模的逐渐扩大,接地短路电流被要求的越来越大。各式各样的微机监控设备的不断普及和应用,同样对防雷接地的要求逐渐增高。以前由于接地装置的一些问题从而引发了主设备的损坏,变电站一度停止运行带来了巨大的损失和严重的问题,给电网的稳定运行造成了很大的麻烦,因此变电站的防雷接地措施必须要高度的重视起来。变电站的接地系统是保护电力系统的正常运行,保障设备及人身安全的措施之一。1.3 本次论文的主要工作随着电力工业的发展,自动化程度越来越高,对安全供电的要求也越来越高。为了防止各种电气事故,保障人民生产、生活的正常有序进行,电气安全已成为社会关注对象,各种电气安全措施也正在建立与完善。电气安全工作

16、是一项综合性的工作,有工程技术的一面,也有组织管理的一面。工程技术和组织管理相辅相成,有着十分密切的联系。电气安全工作主要有两方面的任务。一方面是研究各种电气事故,研究电气事故的机理、原因、构成、选某某变电站作为设计对象,分析该变电站的防雷接地设计。大多数的中型电力用户,都采用的是35 kV电压等级供电,供电部门的35 kV变电站也就成为了电力用户供电的重要的供电渠道。而变电站不一定在在变电站避雷针的保护范围之内,所以35 kV变电站很容易受到雷电的破坏,并给电力用户的生产以及社会经济的发展带来了严重的影响,导致供电部门的供电可靠性也达不到要求。 本课题是针对我国农村35KV变电站进行防雷接地

17、保护设计;根据变电站国家防雷接地标准,结合35KV变电站电气接线图以及具体情况,学习利用各种防雷接地装置等,实现对变电站的直击雷防护、雷电侵入波防护以及变电站的接地保护设计,具有一定针对性和广泛性。252 变电站的防雷保护雷电是一种大气里的放电现象,它产生在积雨里。积雨的云在形成的过程中, 部分云团带有正电荷,部分云团带有负电荷,因此,当电荷总量积聚到了一定的程度时,在不同的电荷云团之间,或者云团和大地之间的电压数值非常大,足够击穿空气。当云团开始游离放电的时候,我们称这个过程为先导放电。云团对地的先导放电现象是云团向地面的跳跃式逐渐发展的过程,当先导放电现象到达地面的时候(地面的建筑物和架空

18、输电线路等),就会产生从地面向云团的主要放电阶段。在主要放电阶段中,由于不同种电荷进行剧烈中和,往往此时会出现非常大的雷电流(一般为在几百千安到几千千安之间),并且随后会产生强烈的闪电及巨大的响声,从而形成了雷电。雷电的防护措施包括以下三个部分: 直击雷的防护、侧击雷的防护和感应雷的防护。防雷工程的一个十分方面是接地和引入下地下线路的基本布线工程,整个防雷工程的效果和防雷器件是否有效都取决这一点, 所以,我们应当认真的研究变电站中电力设备和电子设备的接地效果,它是保障电力设备的安全、操作人员的安全以及设备正常工作运行的必要部分。可以这样说,只要是和电网相连的仪器和设备都必须接地;只要有电力需要

19、的地方,就会是接地工程需要配置的地方。 变电站接地技术是用来防止电力设备和电子设备遭到雷击从而采取的基础性的保护措施,它的目的是把由雷电产生的巨大的雷击电流引到大地中,进而起到保护变电站的作用。同时,变电站接地技术也是保护我们人身安全一种十分有效手段,如果由于某种原因而引起了相线与设备外壳相碰触的时候,电力设备的外壳将会有非常危险的电压产生,此时,故障产成的电流将会流经接地保护装置到达大地,进而起到了保护的作用。 因为变电站具有的特殊环境,比如强大的电磁场、巨大的雷电等其他许多因素影响,使得变电站特别容易受到各式各样的干扰,因此,为了提高变电站运行时的安全及工作时的可靠性,我们应该根据现实存在

20、的不同的干扰源,来采取相应的防雷和抗干扰的措施。一、变电站防雷及抗干扰措施变电站防雷的措施总体可以为两种:第一种是避免雷电电流进入电网系统,第二种则是利用二次保护装置把雷电流引入接地网络。在实际不同的电网中,我们应该根据现场采集的雷电的形式、雷电的频率、电流强度和需要保护的设施重要性,来采取符合需要的保护措施。1、正确屏蔽雷电流对于微机保护的控制装置,电力系统的通信线路应该采用带有屏蔽层的多绞屏蔽电缆,并且应该尽可能把强电的导线单独安装,同时保证电缆的屏蔽层接地自始至终都只有一个点。这是因为在变电站中,电力装置里既有模拟的电路还有数字的电路,所以,数字设备和模拟设备必须应该分开,最后它们只能够

21、具有一个连接点,假如两者不分开,将会互相地干扰,严重时甚至可能损坏设备。2、加装浪涌的二次保护器 变电站开关的操作、静电放电现象及闪电放电时产生的瞬时过电压可能会对电力设备造成毁灭性的伤害或者加快它的老化过程。 对于浪涌现象的保护方法主要是在变电站系统内加装浪涌的二次保护器。浪涌的二次保护器是采用同等电位的原理,及时把浪涌电流导入接地系统。当系统的过电压现象发生时,瞬时的高电压将会抑制电力二极管(Rm)作为反应速度最快的电力元件首先动作,同时开始泄放巨大的雷电电流,并且把输出的电压钳位控制在它的截止电压之上,从而十分有效地防止了巨大的过电压对于电力设备的损伤。当加在TVS里的放电的电流随着电压

22、幅值的上升进而使得充气式的放电器(HFB)两端放电电压超过了它的点火电压UM时,GDT将会瞬时动作,并且也会开始泄放雷电电流。这时,GDT呈现低阻的状态,它的两端仅仅只有2040V的电弧电压,所以可以避免因为过电压的持续时间长进而把TVS烧毁。3、变电所接闪器 在变电站发生雷击之后,防雷系统可以通过直接拦截的方法,引导雷电流进入接地网。接闪器有避雷针和避雷线两种。小型的变电所多数装备独立的避雷针,大型的变电所通常在变电所的架构上采取避雷针和避雷线,或者把两者相结合,并且大型变电所对于引流的线路和接地的装置都有十分严格的要求。4、变电所避雷器避雷器能够把侵入变电所中的雷电流降低至电气装置的绝缘强

23、度允许范围以内。我国的变电所避雷器主要采用的是金属氧化物的避雷路器(ROA),西方的国家除了使用ROA之外,还在所有的电气装置内安装空气的间隙,并作为ROA失效之后的备用设备。5、合理布置避雷装置的安装位置 目前,大多数的RTU子站(或者一体化的微机二次保护装置等),大部分安装在了高压室的配电开关柜上,电力的量测信息通过从高压配电室接到主控台的通信电缆来传输,以MS-525等接口的方式与RTU(或这通信管理机器等)进行数据传送。所以,通信电缆非常容易受到来自于开关的误操作、电力负荷的波动和强电的电缆所产生的巨大电磁场干扰,这些巨大的干扰轻则会增大电力量测信息的误码率,重则可能使得MS-525等

24、数据接口发生损坏。此外,夏天时高压室里的温度比较高,RTU的子站(或者一体化的微机二次保护装置等)内部因为热量过高而产生的干扰噪声现象不容忽视。针对上面分析的问题,我们可以把RTU的子站(或者一体化的微机二次保护装置等)在主控台里集中组屏,这样做不仅能够减少物理干扰源(包括室内温度)对于电力装置的影响,还可以改善电力设备运行的环境,并且能够方便检修和试验人员对电力装置年检的预试工作。二、变电站接地方式目前,变电站的接地方式有许多种,比如单点的接地、多点的接地和混合类型的接地等。单点的接地还分为串联单点的接地及并联单点的接地。一般来讲,单点的接地常常用于简单线路,、以及频率较低(f20MHz)的

25、电路时,我们应该采用多点的接地或者多层板的方式。雷电保护接地指为雷电保护装置(避雷针、避雷线和避雷器等)向大地泄放雷电流而设的接地。因此,变电站构架避雷针(带)和避雷器不仅应采用双引下接地方式,还须敷设23根放射状垂直接地极与主网相连,以达到加强对雷电流的分流作用。对于全站接地网, 影响其工频接地电阻值大小的主要取决于水平接地体,而垂直接地能有效地加强冲击电流的扩散,为避免其相互之间的屏蔽作用,在接地网的边缘设置垂直接地极,且垂直接地极相互间的间距应大于垂直接地体长度的2倍。 在进线构架接地引下线地面上方0.4米处设置可开断点, 当测量全站接地电阻值时与线路地线将其断开,保证测量的准确性。当采

26、用110kV和220kV构架避雷针时,该接地装置与主接地网连接,但地下连接点至主变、35kV及以下设备与主接地网的地下连接点之间,沿接地体的长度不得小于15m。如因场地狭小,直线距离有困难时可考虑地下接地线弯成蛇形状。2.1 变电站的直击雷保护直击雷的影响直击雷是指雷雨云对大地和建筑物放电的现象。它以强大的冲击电流、炽热的温度、猛烈的冲击波以及强烈的电磁辐射损坏放电通道,其最高电流达200300kA,一般在2040kA,其时间甚短,一般仅为10100s。直接击在建筑物构架上,因电效应、热效应和雷电冲击波等作用而造成电力线路、电力系统弱电设备等损坏。其对弱电设备的影响主要表现在以下几个方面: 1

27、、电效应的破坏作用 根据安培定律,当 A、B 平行导体上分别通以电流、(kA),A、B 的距离为d(m)时,每米导线所受的作用力按下式计算 (2-1)式中,平行导体的长度为1m。 假定雷击的瞬间两导体的电流和都等于100kA,两导体的距离d为50cm,计算结果表明,这两根导体每米都受到408kg的力。因此雷击的时候,由于电动力的作用,也有可能使弱电设备导线折断。同样对拐弯的导体或金属构件,在拐弯部分也将受到电动力作用,它们之间的夹角越小,受到的电动力越大。当拐角的夹角为锐角时受到的作用力最大,钝角最小。所以接闪器及其引下线不应出现锐角的拐弯,在不得已采用直角拐弯时应加强构件强度。2、热效应的破

28、坏作用 根据焦耳定律,一次闪击的雷电流发出的热量Q (2-2)式中Q发热量,J;i雷电流,A;R雷电流通道的电阻,; t雷电流持续的时间,s。实际上,雷电流作用的时间很短,散热影响可以忽略,在电流通路上引起的温升T为 (2-3)式中T 温升,K;m雷电流通过的物体质量,kg;c通过雷电流的物体的比热容,J/kgK。 如果雷电击在电弱电设备上,由于雷电流很大,通过的时间极短,被击得物体瞬间产生巨大热量,又来不及散发,将产生巨大的爆炸力。当雷电流通过金属体时,如果金属体的截面积不够大时,甚至可使其熔化。因为通道的温度可高达 600010000,甚至更高。因此在雷电流通道上遇到易燃物质,可能引起火灾

29、。 3、雷电流冲击波的破坏作用 雷电通道的温度高达几千度至几万度,空气受热急剧膨胀,并以超声速度向四周扩散,其外围附近的空气被强烈压缩,形成“激波”。被压缩空气层的外界称为“激波波前”。“激波波前”到达的地方,空气的密度、压力和温度都会突然增加。“激波波前”过去后,该区压力下降,直到低于大气压力。这种“激波”在空气中传播,会使其附近的电力线路、电气设备受到破坏。4、感应雷的影响感应雷对弱电设备的影响主要是指在雷云之间放电或雷云对地之间放电时,在附近的户外传输信号线路、埋地电缆线路、设备连接线上产生电磁感应并侵入设备,使串联在线路之间或线路末端的电子设备受到损坏。感应雷虽不如直击雷猛烈,但其发生

30、的概率比直击雷高得多。 当雷云层与层之间以及雷云与大地之间放电时,在放电通道周围产生的电磁感应、雷电电磁脉冲的辐射以及雷云电场的静电感应,使建筑物上的金属部件、管道、钢筋和由室外进入室内的电源线、信号传输线、天线馈线等感应出雷电高电压,并通过这些线路以及进入室内的管道、电缆等引入室内造成电子设备损坏。显然感应雷危害是大面积的,是危害电子设备的主要干扰源。例如,当雷击大地时,在线路产生感应过电压的值可以按下述经验公式估算 (2-4)式中U 感应过电压,kV; I 雷电流幅值,kA;b 雷击点与导线间的水平距离,m; 导线平均高度,m。 当雷击电流为30kA斜角波,雷云高度为 3km,导线高度为1

31、0m,雷电击中距500m长架空线路中点100m处的地面时,则线路上会产生感应电压幅值为75kV的振荡波。此振荡波为电磁感应和静电感应共同作用的结果。雷电感应是雷电流的强大电场以及磁场变化时产生的静电感应和电磁感应造成的。1、静电感应 当建筑物顶部或其他导体处于雷云与大地间所形成的电场中时,建筑物顶部或导体上就会聚集极性与雷云下部电荷极性相反的大量电荷。当雷云与放电体间的电场强度超过两者之间空气的击穿强度时,雷云对放电体放电,正、负电荷在电路中猛烈地中和。雷云放电后,云与大地间的电场突然消失,建筑物顶部或导体上的电荷来不及立即流散,因而产生很高的对地电位差。这个对地电位差称为静电感应电压。如果楼

32、顶不采取良好的接地措施,室内的设备即有可能因静电感应电压而受损。 雷击时,除建筑物产生很高的感应电压外,在输电线路和通信线路上同样会发生这种现象。由于感应电压极性与雷云极性相反的电荷聚积到一段线路上成为束缚电荷。当雷云对放电体放电时,雷电通道中的电荷猛烈中和,线路上的束缚电荷变为自由电荷并向导线两边流动,形成感应过电压波。高压输电线路上的感应过电压可达 300400kV;一般配电线路和通信线路虽然悬挂高度较低,但雷电流大,感应过电压仍可达几十千伏。2、电磁感应 由于雷电流具有极大的幅值和陡度,在放电通道周围的空间里会产生强大的变化电磁场。处在这一电磁场中的导体会感应出较大的电动势。如果回路中有

33、些地方接触不良,就会产生局部发热或放电现象。电磁感应现象还可以使构成闭合回路的金属物体产生感应电流,对设备或建筑物造成损害。 事实上,在生产实践中雷击的静电感应破坏力数倍于电磁感应。静电感应还可用雷击的二次效应理论来解释。带电雷云飘浮在地表上空,地表带上极性与雷云极性相反的等量电荷。当雷击过后,雷击点地表变为电荷的相对空穴,周围高电荷区域与地电位相对绝缘的导体上的电荷,将导致设备打火、绝缘受损和电子设备失效。避雷针(线)是接地的导电物,一般高于被保护物体,它们的作用就是将雷电吸引到自己身上,安全并迅速地导入地中。避雷针通过自身的高度,在其尖端的高突处形成电场的畸变,在雷云电场的作用下,当尖端的

34、电场强度大于空气电离场强时,开始电离空气,形成迎面先导,并与雷云的雷电先驱相遇,完成雷击过程。为了使雷电流能够顺利下泄,必须有良好的导电通道。因此,避雷针(线)的基本组成部分是接闪器(引发雷击的部位)、引下线和接地体。首先介绍相关方面的知识。2.2 变电站的侵入波保护变电站对侵入波的防护的主要措施是在其进出线上装设阀型避雷器,避雷器装设在被保护物的引入端,其上端接在线路上,下端接地,一般安装在变电站母线上。阀型避雷器的基本元件为火花间隙和非线性电阻。目前,SFZ系列阀型避雷器,主要用来保护中等及大容量变电站的电气设备。FS系列阀型避雷器,主要用来保护小容量的配电装置。变电站中限制侵入波的主要设

35、备是避雷器,它接在变电站的母线上,与被保护设备相并联,并使所有设备受到可靠保护。避雷器实质上是一种放电器(或称限压器),并联在被保护设备附近。避雷器的击穿电压要比被保护设备的低。当线路上传来的过电压超过避雷器的放电电压时,避雷器会先行放电,把入侵波导入大地,限制设备上的过电压,避免电气设备绝缘遭击穿损坏。当入侵波消失后,避雷器又能够自行恢复绝缘能力,防止工频接地短路事故的发生。目前使用的避雷器主要有四种类型,即保护间隙、管型避雷器、阀型避雷器和氧化锌避雷器。前两种主要用于变电站进线段的保护,以限制入侵的大气过电压;后两者主要用于保护变压器或其他电气设备,其保护特性是选择高压电力设备绝缘水平的基

36、础。为了使避雷器达到预期的保护效果,必须正确选择和使用避雷器。避雷器的基本要求:1、避雷器与被保护设备之间应有合理的伏秒特性的配合,在被保护物可能击穿以前,避雷器就已发生动作,将过电压波截断,从而起到可靠的保护作用。工程上常用冲击系数。来反映伏秒特性的形状。冲击系数a是指冲击放电电压与工频放电电压的比值,其比值越小,伏秒特性越平直,一般希望它接近于1。因此,应选用冲击系数小的避雷器作为电气设备的保护装置;2、当瞬间的雷电过电压消失后,避雷器能自行截断工频续流、恢复绝缘强度,保证电力系统能够继续正常运行;3、具有一定通流容量,且其残压应低于被保护设备的冲击耐压值。2.3 变电站的进线段保护要限制

37、流经避雷器的雷电电流幅值和雷电波的波度,就必须对变电站进线实施保护。当线路上出现过电压时,将有行波导线向变电站运动,起幅值为线路绝缘的50%冲击闪络电压,线路的冲击耐压比变电站设备的冲击耐压要高很多。因此,在接近变电站的进出线上加装避雷线是防雷的主要措施。如不架设避雷线,当遭受雷击时,势必会对线路造成破坏。变电站进线保护是在靠近变电站出线架12km线路上所采取的可靠的防雷保护措施,变电站进线保护具体措施视变电站的线路情况而定。为了限制流经避雷器的雷电流和限制入侵波的陡度,变电所需采用进线保护接线。一、35kV及以上变电所的进线段保护对于35110kV无避雷线的线路,当雷击于变电所附近线路的导线

38、上时,沿线入侵流经避雷器的雷电流可能超过5kA,而且陡度也可能超过允许值,因此对对于35110kV无避雷线的线路,在靠近变电所的一段进线上,必须架设避雷线,在进线段内出现雷电波的概率大大减小,保证雷电波只能在进线段以外出现。架设避雷线的这段进线称为变电所进线保护段1、未沿全线架设避雷线的进线段保护图4.1进段保护示意图(1)阀型避雷器的作用:保护全所设备;(2)避雷线作用:避雷线保护角很小,在进线段内不发生绕击,雷击于进线段以外的导线上时,导线自身电阻将消耗入侵波能量,来限制入侵波幅值;(3)管型避雷器1:限流;(4)管型避雷器2:保护开关。二、全线架设避雷线的变电所进线段保护图4.2全线架设

39、避雷线的变电所进线段保护三、35kV小容量变电所的简化进线保护图4.3 35kV小容量变电所的简化进线保护四、用电抗线圈代替进线段的保护接线图4.4 用电抗线圈代替进线段的保护接线2.4 避雷针与避雷线的保护范围的计算雷击只能通过拦截导引措施改变其入地路径。接闪器有避雷针、避雷线。小变电所大多采用独立避雷针,大变电所大多在变电所架构上采用避雷针或避雷线,或两者结合,对引流线和接地装置都有严格的要求。一、避雷针保护范围确定在一定高度的避雷针下面有一个安全区域,在这个区域中的物体基本上不会受到雷击,这个安全区域就是避雷针的保护范围。当然由于雷电的路径是受很多偶然因素的影响,要保证被保护物绝对不受直

40、接雷击是不现实的,因此保护范围是按照99.9%的保护概率而定的。在工程上可由简化保护范围的计算方法确定。工程中多采用两根或多根避雷针用来扩大保护范围。两支等高避雷针相距不太远时,由于两针的联合屏蔽作用,是两针中间部分的保护范围比单针时要大,避雷针外侧的保护范围与单根避雷针时相同。为保证两针联合保护效果,两针间距离与针高之比D/h不宜大于5。当两支避雷针不等高时,两外侧的保护范围仍按单针方法求出。两针之间的保护范围可按如下方法确定:首先按单针算出高针的保护范围,然后由低针的顶点作水平线与高针的保护范围边界点设为假想的避雷针,按两根等高避雷针的方法,求出低针与假想针之间的保护范围。由于变电站的面积

41、比较大,实际上都采用多支避雷针保护的方法,多支避雷针保护范围应按下列方法确定:1、将多支避雷针的多边形,按相临近的原则,划分成若干个3支避雷针组成的三角形;2、各边的保护范围一侧最小宽度b:之0时(b:指在高度为被保护物体高度的水平面上,保护范围一侧的最小保护宽度),则全部面积才能受到保护;3、多支避雷针的外侧保护范围,应分别按等高或不等高两针的保护范围的方法确定二、避雷线保护范围的确定避雷线相当于挂在高空的接地导线。避雷线对雷云与大地间电场畸变的影响比避雷针小,所以其引雷作用和保护宽度比避雷针要小。但因避雷线的保护长度是与线路等长的,所以特别适合保护架空线路,有时还可以编成防雷保护网或避雷带

42、来保护一些重要的建筑物。避雷线和避雷针一样,也有一定的保护范围,保护范围与避雷线的数量、高度、架设的位置、雷云高度及雷云对避雷线的位置有关。避雷线保护范围还可以用保护角(指避雷线同外侧导线的连线与垂直线之间的夹角)来表示,雷击导线的概率随保护角的减小而降低。3 变电站的防雷接地接地装置的设计对于电力系统的安全运行至关重要。变电站接地系统的合理与否是直接关系到人身和设备安全的重要问题。随着电力系统规模的不断扩大,接地系统的设计越来越复杂。变电站接地包含工作接地、保护接地、雷电保护接地。工作接地即为电力系统电气装置中,为运行需要所设的接地;保护接地即为电气装置的金属外壳、配电装置的构架和线路杆塔等

43、,由于绝缘损坏有可能带电,为防止其危及人身和设备的安全而设的接地;雷电保护接地即为为雷电保护装置向大地泄放雷电流而设的接地。变电站接地网安全除了对接地阻抗有要求外,还对地网的结构、使用寿命、跨步电位差、接触电位差、转移电位危害等提出了较高的要求。变电所防雷保护满足要求以后,还要根据安全和工作接地的要求敷设一个统一的接地网,然后避雷针和避雷器下面增加接地体以满足防雷的要求,或者在防雷装置下敷设单独的接地体。小变电所用独立避雷针,大变电大多在独立避雷针与配电装置带电部分的空气中最短途径不得小于五米。避雷针接地引下线埋在地中部分与配电装置构架的接地导体埋在地中部分在土壤中的距离必须大于三米,变电所电

44、气装置的接地装置采用水平接地极为主的人工接地网,水平接地极采用扁钢50mm5mm,垂直接地极采用角钢50mm5mm,垂直接地极间距5m6m,主接地网接地装置电阻不大于4,主接地网埋于冻土层1m以下。人工接地网的外缘应闭合,外缘各角应做成圆弧形。大变电所安装在架构上的避雷针,与主接地网应在其附近装设集中接地装置。避雷针与主接地网的地下连接点至变压器的接地线主接地网的地下连接点,沿接地体的长度不得小于15m,同时变压器门形架构上不得装避雷针。3.1 接地概述 接地就是将电力或建筑电气装置、设施中某些导电部分,经接地线接至接地极。接地根据工作内容划分为以下几种:1工作接地工作接地是为系统正常工作而设

45、置的接地。如为了降低电力设备的绝缘水平,在及以上电力系统中采用中性点接地的运行方式,在两线一地的双极高压直流输电中也需将其中性点接地。除主设备的接地外,在微电子电路中,根据电路性质不同,还有各种不同的工作接地比如直流地、交流地、数字地、模拟地、信号地、功率地、电源地等。2防雷接地为了避免雷电的危害,避雷针、避雷线和避雷器等防雷设备都必须配以相应的接地装置以便将雷电流引入大地。3安全接地为了保证人身的安全,将电气设备外壳设置的接地。任何接地极都存在着接地电阻,正因为如此,当有电流流过接地体时,在接地电阻上的压降将引起接地极电位的升高电流在地中扩散时,地面会出现电位梯度。3.2 接地电阻大地是个导

46、体,当其中没有电流流通时是等电位的,可以认为大地具有零电位。如果地面上的金属物体与大地牢固连接,在没有电流流通的情况下金属物体与大地之间也是等电位的,该金属物体就具有了大地的零电位,这就是接地。实际上,大地并不是理想导体,有一定的电阻率。如果有电流流过,大地就不再保持等电位。流进大地的电流是经过接地体注入的,进入大地后的电流会向四处扩散。如果设土壤的电阻率为p,大地中的电流密度为J,则大地中必然产生相应的电场分布,其电场强度为E=pJ。离电流注入点距离越远,地中的电流密度J就越小,电场强度E也越小。把接地点处的电位Um与接地电流I的比值称为接地电阻R。当接地电流I一定是,接地电阻R越大,那么电位Um越高,这时地面上的接地物体(如一些电气设备外壳)也具有了的电位Um,这就可能引起与其他带电部分间的绝缘闪络,也可能引起大的接触电压Uj和跨步电压Uk,使得通过人体的电流超过安全值,从而危及人身的安全。所以最大限度地降低接地电阻非常重要。在工程计算中,通过分析接地电阻,可

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁