《水醇二元体系浮阀精馏塔的工艺设计化工原理课程设计--毕业设计.doc》由会员分享,可在线阅读,更多相关《水醇二元体系浮阀精馏塔的工艺设计化工原理课程设计--毕业设计.doc(58页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 南京工业大学化工原理课程设计设计题目 甲醇-水二元体系浮阀精馏塔的工艺设计 学生姓名 班级、学号 指导教师姓名 夏毅 王海燕 课程设计时间 年 月 日 年 月 日 课程设计成绩百分制 权重设计说明书、计算书及设计图纸质量,70%独立工作能力、综合能力、设计过程表现、设计答辩及回答问题情况,30%设计最终成绩(五级分制)指导教师签字 课程名称: 化工原理课程设计设计题目: 甲醇-水体系浮阀精馏塔的设计学生姓名: 专业: 化学工程与工艺 班级学号: 设计日期: 2012-12-24至2013-01-06设计任务: 甲醇-水体系设计条件及任务:进料流量:F250kmol/h进料组成:Xf=0.28
2、(摩尔分率)进料热状态:泡点进料要求塔顶产品浓度XD=0.99易挥发组分回收率0.99前 言化学工业中塔设备是化工单元操作中重要的设备之一,化学工业和石油工业中广泛应用的诸如吸收、解吸、精馏、萃取、增湿、减湿等单元操作中,精馏操作是最基本的单元操作之一,它是根据混合液中各组分的挥发能力的差异进行分离的。 塔设备一般分为级间接触式和连续接触式两大类。前者的代表是板式塔,后者的代表则为填料塔。一般,与填料塔相比,板式塔具有效率高、处理量大、重量轻及便于检修等特点,但其结构较复杂,阻力降较大。在各种塔型中,当前应用最广泛的是筛板塔和浮阀塔。浮阀塔的特点:1生产能力大,由于塔板上浮阀安排比较紧凑,其开
3、孔面积大于泡罩塔板,生产能力比泡罩塔板大 20%40%,与筛板塔接近。 2操作弹性大,由于阀片可以自由升降以适应气量的变化,因此维持正常操作而允许的负荷波动范围比筛板塔,泡罩塔都大。 3塔板效率高,由于上升气体从水平方向吹入液层,故气液接触时间较长,而雾沫夹带量小,塔板效率高。 4气体压降及液面落差小,因气液流过浮阀塔板时阻力较小,使气体压降及液面落差比泡罩塔小。 5塔的造价较低,浮阀塔的造价是同等生产能力的泡罩塔的 50%80%,但是比筛板塔高 20%30。 但是,浮阀塔的抗腐蚀性较高(防止浮阀锈死在塔板上),所以一般采用不锈钢作成,致使浮阀造价昂贵,推广受到一定限制。随着科学技术的不断发展
4、,各种新型填料,高效率塔板的不断被研制出来,浮阀塔的推广并不是越来越广。 近几十年来,人们对浮阀塔的研究越来越深入,生产经验越来越丰富,积累的设计数据比较完整,因此设计浮阀塔比较合适。本次设计就是针对甲醇水体系,而进行的常压浮阀精馏塔的设计及其辅助设备的选型。由于此次设计时间紧张,本人水平有限,难免有遗漏谬误之处,恳切希望各位老师指出,以便订正。 2013年1月目 录概述7第一章 总体操作方案的确定1.1操作压强的选择71.2物料的进料热状态71.3回流比的确定81.4塔釜的加热方式81.5回流的方式方法8第二章 精馏的工艺流程图的确定9第三章 理论板数的确定3.1物料衡算93.2物系相平衡数
5、据 103.3确定回流比113.4理论板数NT的计算以及实际板数的确定113.5实际塔板数的确定13第四章 塔体主要工艺尺寸的确定4.1各设计参数144.2精馏段塔径塔板的实际计算204.2.1精馏段汽、液相体积流率4.2.2塔径塔板的计算4.2.3塔板流体力学的验算4.2.4塔板负荷性能图及操作弹性4.3提馏段塔径塔板的实际计算334.3.1精馏段汽、液相体积流率4.3.2塔径塔板的计算4.3.3塔板流体力学的验算4.3.4塔板负荷性能图及操作弹性第五章浮阀塔板工艺设计计算结果45第六章 辅助设备及零件设计1.塔顶全凝器的计算及选型462.塔底再沸器面积的计算及选型513.其他辅助设备计算及
6、选型52第七章 设计感想57第八章 致谢58第九章 参考文献58 概述:塔设备一般分为级间接触式和连续接触式两大类。前者的代表是板式塔,后者的代表则为填料塔。一般,与填料塔相比,板式塔具有效率高、处理量大、重量轻及便于检修等特点,但其结构较复杂,阻力降较大。在各种塔型中,当前应用最广泛的是筛板塔和浮阀塔。浮阀塔的优点:1生产能力大,由于塔板上浮阀安排比较紧凑,其开孔面积大于泡罩塔板,生产能力比泡罩塔板大 20%40%,与筛板塔接近。 2操作弹性大,由于阀片可以自由升降以适应气量的变化,因此维持正常操作而允许的负荷波动范围比筛板塔,泡罩塔都大。 3塔板效率高,由于上升气体从水平方向吹入液层,故气
7、液接触时间较长,而雾沫夹带量小,塔板效率高。 4气体压降及液面落差小,因气液流过浮阀塔板时阻力较小,使气体压降及液面落差比泡罩塔小。 5塔的造价较低,浮阀塔的造价是同等生产能力的泡罩塔的 50%80%,但是比筛板塔高 20%30。 但是,浮阀塔的抗腐蚀性较高(防止浮阀锈死在塔板上),所以一般采用不锈钢作成,致使浮阀造价昂贵,推广受到一定限制。随着科学技术的不断发展,各种新型填料,高效率塔板的不断被研制出来,浮阀塔的推广并不是越来越广。 近几十年来,人们对浮阀塔的研究越来越深入,生产经验越来越丰富,积累的设计数据比较完整,因此设计浮阀塔比较合适。本次的课程设计任务是甲醇和水的体系,要想把低纯度的
8、甲醇水溶液提升到高纯度,要用连续精馏的方法,因为甲醇和水的挥发度相差不大。精馏是多数分离过程,即同时进行多次部分汽化和部分冷凝的过程,因此可使混合液得到几乎完全的分离。化工厂中精馏操作是在直立圆形的精馏塔内进行的,塔内装有若干层塔板或充填一定高度的填料。为实现精馏分离操作,除精馏塔外,还必须从塔底引入上升蒸汽流和从塔顶引入下降液。可知,单有精馏塔还不能完成精馏操作,还必须有塔底再沸器和塔顶冷凝器,有时还要配原料液预热器、回流液泵等附属设备,才能实现整个操作。浮阀塔是二十世纪五十年代初开发的一种新塔型。其特点是在筛板塔基础上,在每个筛孔处安置一个可上下移动的阀片。当筛孔气速高时,阀片被顶起、上升
9、,孔速低时,阀片因自重而下降。阀片升降位置随气流量大小作自动调节,从而使进入液层的气速基本稳定。又因气体在阀片下测水平方向进入液层,既减少液沫夹带量,又延长气液接触时间,故收到很好的传质效果。国内常用的浮阀有三种,即图1所示的F1型及图2所示的V-4型与T型。V-4型的特点是阀孔被冲压成向下弯的喷咀形,气体通过阀孔时因流道形状渐变可减小阻力。T型阀则借助固定于塔板的支架限制阀片移动范围。三类浮阀中,F1型浮阀最简单,该类型浮阀已被广泛使用。我国已有部颁标准(JB111868)。F1型阀又分重阀与轻阀两种,重阀用厚度2mm的钢板冲成,阀质量约33g,轻阀用厚度1.5mm的钢板冲成,质量约25g。
10、阀重则阀的惯性大,操作稳定性好,但气体阻力大。一般采用重罚。只有要求压降很小的场合,如真空精馏时才使用轻阀。 图1 浮阀(F1型) 图2 浮阀(a)V-4型,(b)T型一 总体操作方案的确定1.1 操作压强的选择:精馏可以常压,加压或减压条件下进行。确定操作压力时主要是根据处理物料的性质,技术上的可行性和经济上的合理性来考虑的。对于沸点低,常压下为气态的物料必须在加压条件下进行操作。在相同条件下适当提高操作压力可以提高塔的处理能力,但是增加了塔压,也提高了再沸器的温度,并且相对挥发度液会下降。对于热敏性和高沸点的物料常用减压蒸馏。降低操作压力,组分的相对挥发度增加,有利于分离。减压操作降低了平
11、衡温度,这样可以使用较低位的加热剂。但是降低压力也导致了塔直径的增加和塔顶冷凝温度的降低,而且必须使用抽真空设备,增加了相应的设备和操作费用。本次任务是甲醇和水体系,甲醇-水这一类的溶液不是热敏性物料,且沸点又不高,所以不需采用减压蒸馏。这类溶液在常压下又是液态,塔顶蒸气又可以用普通冷却水冷凝,因而也不需采用加压蒸馏。所以为了有效降低设备造价和操作费用对这类溶液可采用常压蒸馏。 操作压强:P=1atm=0.1MPa=1.013103KPa1.2 物料的进料热状态:进料热状态有五种。原则上,在供热一定的情况下,热量应尽可能由塔底输入,使产生的气相回流在全塔发挥作用,即宜冷也进料。但为使塔的操作稳
12、定,免受季节气温的影响,常采用泡点进料。这样,塔内精馏段和提留段上升的气体量变化较小,可采用相同的塔径,便于设计和制造。但将原料预热到泡点,就需要增设一个预热器,使设备费用增加。综合考虑各方面因素,决定采用泡点进料,即q=1 。1.3 回流比的确定: 对于一定的分离任务,采用较大的回流比时,操作线的位置远离平衡线向下向对角线靠拢,在平衡线和操作线之间的直角阶梯的跨度增大,每层塔板的分离效率提高了,所以增大回流比所需的理论塔板数减少,反之理论塔板数增加。但是随着回流比的增加,塔釜加热剂的消耗量和塔顶冷凝剂的消耗量液随之增加,操作费用增加,所以操作费用和设备费用总和最小时所对应的回流比为最佳回流比
13、。本次设计任务中,综合考虑各个因素,采用回流比为最小回流比的1.6倍。即:R=1.6 Rmin1.4 塔釜加热方式:塔釜可采用间接蒸汽加热或直接蒸汽加热。直接蒸汽加热的优点是,可利用压强较低的加热蒸汽,并省掉间接加热设备,以节省操作费用和设备费用。但直接蒸汽加热,只适用于釜中残液是水或与水不互溶而易于分离的物料,所以通常情况下,多采用间接蒸汽加热。1.5 回流的方式方法: 液体回流可借助位差采用重力回流或用泵强制回流。采用重力回流可节省一台回流泵,节省设备费用,但用泵强制回流,便于控制回流比。考虑各方面综合因素,采用重力回流。二. 精馏的工艺流程图的确定甲醇水溶液经预热至泡点后,用泵送入精馏塔
14、。塔顶上升蒸气采用全冷凝后,部分回流,其余作为塔顶产品经冷却器冷却后送至贮槽。塔釜采用间接蒸汽再沸器供热,塔底产品经冷却后送入贮槽。3. 理论板数的确定3.1 物料衡算:= D=FXf/XD=0.992500.28/0.99=70 kmol/hF=D+W W=F- D=250-70=180 kmol/hFXf= DXD+WXw Xw=(FXf-DXD)/W=(2100.20-420.99)/168=0.003893.2 物系相平衡数据a. 基本物性数据组分分子式分子量沸点熔点水H2O18.015373.15K273.15K甲醇CH3OH32.040337.85K176.15Kb. 常压下甲醇和
15、水的气液平衡表(txy)tXytxy1000077.829.0968.0192.95.3128.3476.733.3369.1890.37.6740.0176.235.1369.1888.99.2643.5373.846.2077.5686.612.5748.3172.752.9279.7185.013.1554.5571.359.3781.8383.216.7455.8570.068.4984.9282.318.1857.7568.085.6289.6281.620.8362.7366.987.4191.9480.223.1964.8564.710010078.028.1867.75 3.3
16、 确定回流比:根据甲醇水气液平衡组成表和相对挥发度公式 , 求得:算得相对挥发度=4.83平衡线方程为:y=4.83x/(1+3.83x) 因为泡点进料 所以 xe = Xf=0.28 代入上式得 ye = 0.6526 Rmin = =(0.99-0.6526)/(0.6526-0.2)=0.9055 R=1.6 Rmin =1.6*0.9055=1.44883.4理论板数NT的计算以及实际板数的确定1)塔的汽、液相负荷 L=RD=1.448870=101.416 kmol/hV=(R+1)D=(1.4488+1) 70=171.416 kmol/h V=V=171.416 kmol/hL=
17、L+F=101.416 kmol/h+250 kmol/h=351.416kmol/h2)求操作线方程精馏段操作线方程: y=x + =0.5916x+0.4043提馏段操作线方程为: =2.05x-0.01053)逐板计算法求理论板层数 精馏段理论板数: 平衡线方程为:y=4.83x/(1+3.83x) 精馏段操作方程:y=x + =0.5916x+0.0.4043 由上而下逐板计算,自X0=0.99开始到Xi首次超过Xq =0.2时止 操作线上的点 平衡线上的点 (X0=0.99,Y1=0.99) (X1=0.95, Y1=0.99) (X1=0.95,Y2=0.97) (X2=0.87,
18、Y2=0.97) (X2=0.87,Y3=0.92) (X3=0.70,Y1=0.92) (X3=0.70,Y4=0.82) (X4=0.49,Y4=0.82) (X4=0.49,Y5=0.69) (X5=0.32,Y5=0.69) (X5=0.32,Y6=0.59) (X6=0.23,Y6=0.59)因为X6 时首次出现 Xi Xq 故第6块理论版为加料版,精馏段共有5块理论板。提馏段理论板数提馏段操作线方程:y=2.3147x-0.00328已知X6=0.23, 由上而下计算,直到Xi 首次越过Xw=0.00389时为止。操作线上的点 平衡线上的点(X6=0.23,Y7=0.46) (X7
19、=0.15,Y7=0.46)(X7=0.15,Y8=0.34) (X8=0.096,Y8=0.34)( X8=0.096,Y9=0.19) (X9=0.046,Y9=0.19)(X9=0.046,Y10=0.084) (X10=0.0186,Y10=0.084)(X10=0.0186,Y11=0.028) (X11=0.00593,Y11=0.028)(X11=0.00593,Y12=0.00166) (X12=0.00344,Y12=0.00166)由于到X13首次出现Xi 6 mm 故降液管底隙高度设计合理。d.安定区与边缘区的确定取安定区宽度=0.07m,边缘区宽度取=0.04m 弓形降
20、液管宽度 Wd=0.15me.鼓泡区间阀孔数的确定以及排列采用F1型重阀,孔径为39mm。取阀孔动能因子 FO=9.5孔速 uo=9.5/(1.0456)0.5=9.29054 m/s浮阀数:n=1.297/(1/43.141590.03929.29054)=107.5=108(个)有效传质区:根据公式:其中:R=0.46mx=0.28m=0.4498m2塔板的布置因 D800mm 故塔板采用分块式,查表的塔块分为3块,采用等腰三角形叉排。浮阀塔筛孔直径取 d=39mm,阀孔按等腰三角形排列。 阀孔的排列:第一排阀孔中心距t为75mm,各排阀孔中心线间的距离t可取65mm,80mm,100mm
21、. 经过精确绘图,得知,当t=65mm时,阀孔数N实际=98个按N=85重新核算孔速及阀孔动能因数:孔速u0= VS/( 1/4 d2 N)=11.079 m/sF0=uo(V,M) 0.5=11.58阀孔动能因数变化不大,仍在912范围内。开孔率空塔气速u= VS / AT = 1.6514 m/s =u / uo =1.6514 / 11.428 =14.45 %5%14.45%15%, 符合要求故:t=75mm , t=65mm, 阀孔数N实际=98个则每层板上的开孔面积AO =A a = 0.449814.45 %=0.065m24)塔板流体力学的验算a.塔板压降气体通过浮阀塔板的压力
22、降(单板压降)干板阻力 : 浮阀由部分全开转为全部全开时的临界速度为U0,cU0,c=(73.1/V,M)(1/1.825)=10.250m/s11.428m/s =5.341.045611.4282/(2807.3679.8)=0.0461m液柱液层阻力充气系数 =0.5,有:h1=h1=0.50.06=0.03m液柱液体表面张力所造成阻力, 此项可以忽略不计。故气体流经一层浮阀塔塔板的压力降的液柱高度为:hp=0.03+0.0461=0.0761m常板压降=0.0761807.3679.81=602.7326Pa 640Pa,符合设计要求。b. 液泛的校核为了防止塔内发生液泛,降液管高度应
23、大于管内泡沫层高度。即:Hd(HT+hW)Hd=hw+how+hd+hp+ hd=0.2(LS/(lwho)2 甲醇-水属于一般物系,取0.5 对于浮阀塔0则Hd=hw+how+hd+hp+=0.04802+0.01198+0.2(0.00095/(0.70.022)2+0.0761=0.07926m(HT+hW)=0.5(0.4+0.04802)=0.224m因0.137965s 符合要求d雾沫夹带泛点率=100%lL=D-2Wd=1-20.15=0.7Ab=AT-2Af=0.7854-20.0707=0.644式中: lL板上液体流经长度,m; Ab板上液流面积,m2 ;CF泛点负荷系数,
24、由图查得泛点负荷系数取0.098 K特性系数,查下表,取1.0.物性系数K系统物性系数K无泡沫,正常系统氟化物(如BF3,氟里昂)中等发泡系统(如油吸收塔、胺及乙二醇再生塔)多泡沫系统(如胺及乙二胺吸收塔)严重发泡系统(如甲乙酮装置)形成稳定泡沫的系统(如碱再生塔)1.00.90.850.730.600.30由上代入数据得:泛点率=75.44% 对于大塔,为避免过量雾沫夹带,应控制泛点率不超过80%。计算出的泛点率在80%以下,故可知雾沫夹带量能够满足ev0.1kg液/kg(干气)的要求。e. 漏液验算 0.5312 m3/sVs=1.2553 m3/s,可见不会产生过量漏液。4) 塔板负荷性能图及操作弹性液相下限线因堰上液层厚度how为最小值时,对应的液相流量为最小。设how,小=0.006m LW=0.7 推出 LS=0.000575 m3/s液相上限线当停留时间取最小时,LS为最大,求出上限液体流量值(常数),在图上,液相负荷上限线为与气体流量无关的竖直线。以作为液体在降液管中停留时间的下限,