《李丽涛:《合并同类项》教案3篇 合并同类项的优秀教案.docx》由会员分享,可在线阅读,更多相关《李丽涛:《合并同类项》教案3篇 合并同类项的优秀教案.docx(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、李丽涛:合并同类项教案3篇 合并同类项的优秀教案李丽涛:合并同类项教案1 合并同类项教案 茅箭中学 肖荣基 教学目标 知识目标:使学生了解同类项的概念,能识别同类项,学会合并同类项并知道合并同类项所依据的运算律 能力目标:培养学生观察、分析、归纳和动手解决问题的能力,初步使学生了解数学的分类思想 情感目标:借助情感因素,营造亲切和谐活泼的课堂气氛,激励全体学生积极参与教学活动培养他们团结协作,严谨求实的学习作风和锲而不舍,勇于创新的精神 教学重点 同类项的概念和合并同类项的法则及求代数式的值。教学难点 学会合并同类项 教学方法 引导、启发、探求.教学过程 一、复习回顾 1.同类项:所含字母相同
2、,并且相同字母的指数也相同的项。几个常数也是同类项。 2.同类项有两个特征(1)所含字母相同;(2)相同字母的指数分别相同;(两者缺一不可)3.同类项与他们的系数大小无关; 4.同类项与它们所含相同字母的顺序无关; 5、判断下列说法是否正确。(1)、3x与3mx是同类项。(2)、2ab与-5ab是同类项。(3)、3x2与1?3yx2是同类项。(4)、5ab2与2ab2c是同类项。(5)、23与32是同类项。 二、创设情境,引入课题 问题:为了搞好班会活动,班长和生活委员去购买一些水笔和软抄本作为奖品,他们首先购买了15本软抄本和20支水笔,经过预算,发现这么多奖品不够用,然后他们又去购买了6本
3、软抄本和5支水笔。问: 、他们两次共买了多少本软抄本和多少支水笔? 答案:21本软抄本,25支水笔 、如果软抄本的单价为每本x元,水笔的单价为每支y元,则这次活动他们支出的总金额是多少元? 答案:15x+20y+6x+5y=21x+5y 提问合并同类项概念:把多项式中的同类项合并成一项。 设计意图:用此方式,充分调动了学生积极参与,激发了学生求知欲望创设问题情境,选择新旧知识的切入点,通过启发提问,构造问题悬念,激发学生兴趣,并自然引出课题 二、实践思考 探索交流 例 1、找出多项式3x2y-4xy2-3+5x2y+2xy2+5 中的同类项,并合并同类项。 问题1:同类项有哪些?同类项怎么合并
4、? 35=_; 3x2y+5x2y=_=_ 其理由是_;-4xy2 +2xy2=_=_ 其理由是_.问题2:在一个多项式中,不在一起的同类项能否将同类项结合在一起?为什么? 答:可以,理由是运用加法交换律与结合律将同类项结合在一起,原多项式不变。 解:3x2y-4xy2-3+5x2y+2xy2+5 =3x2y+5x2y-4xy2+2xy2+5-3 加法交换律 =(3x2y+5x2y)+(-4xy2+2xy2)+(5-3) 统一加法的形式 =(3+5)x2y+(-4+2)xy2 +(5-3) 乘法分配律的逆运算 =8x2y-2xy2+2 合并 问题4:根据上面合并同类项的例子,你能归纳合并同类项
5、的法则吗? 合并同类项法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.注意:(1)、合并的前提是有同类项.(2)、合并指的是系数相加,”相加”指的是代数和.(3)、合并同类项的根据是加法交换律、结合律以及乘法分配律。 设计意图:利用问题形式提示学生上面是利用了乘法的分配律逆运算(学生分组讨论)例 2、合并下列多项式中的同类项。(1)a3-a2b+ab2+a2b-ab2+b3(2)6a2-5b2+2ab+5b2-6a2 学生思考:合并同类项的步骤是怎样? 1、准确地找出同类项。 2、利用合并同类项的法则合并同类项。3写出合并后的结果。 解: (1)、a3-a2b+ab2+
6、a2b-ab2+b3 找出同类项 =a3+(-a2b+a2b)+(ab2-ab2)+b3 把同类项结合 =a3+(-1+1)a2b +(1-1)ab2+b3 把同类项合并 =a3+b3 若该项没有同类项怎么办?照抄下来 (2)6a2-5b2+2ab+5b2-6a2 =6a2-6a2-5b2+5b2 +2ab =(6a2-6a2)+(-5b2+5b2)+2ab =2ab 方法是:(1)系数:各项系数相加作为新的系数。(2)字母以及字母的指数不变。 强调学生注意: (1)、用画线的方法标出各多项式中的同类项,以减少运算的错误。 (2)、移项时要带着原来的符号一起移动。 (3)、两个同类项的系数互为
7、相反数时,合并同类项,结果为零。 (4)、合并同类项时,只能把同类项合并为一项,不是同类项的不能合并,不能合并的项,在每一步运算中都要写上;、同类项移动位置时,不要漏掉它的性质符号,特别注意“-”。 例 3、求多项式3x2+4x-2x2-x+x2-3x-1 的值,其中x=-3。 方法1 解:当 x=-3时 原式=3(-3)2+4(-3)-2(-3)2-(-3)+(-3)2-3(-3)-1 =39-12-29+3+9+9-1 =27-12-18+3+9+9-1 =17 方法2 解:3x2+4x-2x2-x+x2-3x-1 =3x2-2x2+x2+4x-x-3x-1 =(3-2+1)x2+(4-1
8、-3)x-1 =2x2-1 当 时x=-3时,原式=2(-3)2-1 =17 提问学生:通过求值你发现了什么?怎样更简捷的求值呢? 答:求多项式的值,常常先合并同类项,再求值,这样比较方便。 设计意图:使学生知道在此题形中先化简,再求值比较方便,帮助学生提高解题速度。 三、概括提升(课堂练习)。 1、如果两个同类项的系统互为相反数,那么合并同类项后,结果.比如-5a2b+5a2b=.、先标出下列各多项式的同类项,再合并同类项。 (1)、3x-2x2+5+3x2-2x-5 (2)、a3+a2b+ab2-a2b-ab2-b3 解答:略 设计意图:帮助学生巩固本节课所学的内容,同时也可提高学生计算能
9、力。 四、本节你学到了什么? 合并同类项:我们把多项式中的同类项合并成一项。 合并同类项法则:(1)、把同类项的系数相加,所得的结果作为系数;(2)字母和字母的指数保持不变.(3)、求代数式的值时,先化解,再代入比较简便。 设计意图:帮助学生总结和巩固本节课所学的内容。 五、作业:P66第1题和第2题。 设计意图:帮助学生巩固本节课所学的内容 .合并同类项教学反思 通过练习,使学生熟悉并掌握同类项概念和合并同类项法则。整个教学过程来说,学生反映较好,但是课下我自己的反思,发现自己有很多地方需要注意和改进。 1、板书设计很重要,这能体现教师的讲课内容的重点,难点。而我的板书在这方面需要改进。 2
10、、提出的问题还没有到位。在教学过程总,曾出现学生不知老师所提出问题的意图,我的语言表达不是很准确,不是很到位,这是我今后在教学方面应该加强注意和练习。 3、同类项的概念要让学生着重理解到会灵活运用。 4、探究过程是一个十分重要的过程。这时老师应该特别注意学生的反应。 5、不仅内容要传授准确,而且要强调学生做题的规范性,使学生养成良好的学习习惯。 6、在学生学习活动环节,老师应关注学生探究化简方法是否能积极思考,主动参与;是否能说出化简方法的理论依据,学生对同类项定义的理解和掌握情况对合并同类项法则的总结情况。 7、结合学校特点,发挥优势,数学科课堂教学模式还要更加深入地探索、研究,逐步形成自我
11、教学特色。 8、在授课前要想办法,用生动有趣的图案和实物来代替抽象的理论知识,来调动学生的学习积极性,用精彩的问题设置吸引学生,用数学实验和游戏吸引学生,用生动有趣的语言、事例吸引学生。 另外,我对本节课的重点内容的把握不是很好。对学生的接受新知识的能力有所高估。在今后的教学中,应需要钻研教材,了解学生的基本情况。新知识的接受需要一个过程,突出学生主体地位,让学生在课堂上的思考、讨论、总结这也需要一个过程,培养学生的良好的学习习惯。 总之,应用教材,如何引导学生去学成为关键。这就要求我们的课堂教学模式有所改进,充分考虑学生的好奇心和荣誉感,鼓励学生多讨论多参与,让学生有机会讲述自己的见解,我们
12、要有“度”的进行课堂管理。不仅要注重培养学生的学习兴趣,更要尊重学生的学习兴趣,不能扼杀学生的学习热情,让学生在打好学习基础的同时,又培养了自身的能力,发展了自身的特长。 李丽涛:合并同类项教案2 整式的加减(合并同类项第一课时)教案 主讲人:刘 义 国 教材分析:本节课是在学习了单项式、多项式之后,以同类项的概念、合并同类项的法则及其运用为教学内容。合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是以后学习解方程、解不等式的基础。另一方面,这节课与前面所学的知识有着千丝万缕的联系:合并同类项的法则是建立在数的运算的基础之上;在合并同类项过程中,要不断运用数的运算。可以说合并同类项
13、是有理数加减运算的延伸与拓广。因此,这是一节承上启下的课。同时也是渗透数学思想分类思想的一节课。 教学目标: 知识与技能:在具体情境中了解同类项及合并同类项法则。过程与方法: 1、经历合并同类项法则的概括过程,进一步发展学生的抽象思维能力和概括能力; 2、通过分组合作学习活动,学会在活动中与他人合作,并能与他人交流思维的过程和结果。情感态度与价值观: 1、通过合并同类项法则的概括与合作学习的过程,培养学生从特殊到一般的思维认知规律 2、通过具体情境的探索、交流等数学活动培养学生的团体合作精神和积极参与、勤于思考意识。 教学重难点: 重点:同类项的概念、合并同类项的法则及应用。难点:正确判断同类
14、项;准确合并同类项。 教学过程: (一)创设情境,激发兴趣 多媒体展示苹果、橘子。问学生怎样分类? 师指出:不仅生活中处处有分类的问题,在数学中也有分类的问题。进入数学问题的探究 (设计目的:寓教于乐,使数学与生活融为一体,有益于学生理解数学、热爱数学,充分调动学习的积极性,为本课学习做好准备。) (二)观察探究,分组讨论 多媒体展示:5a 与 9a、 5m2n 与 6m2n、y x2 与 8x2y、0 与思考:上述代数式归为四类需要有什么共同的特征?请学生交流讨论后归纳 得出同类项的概念:所含字母相同,并且相同字母的指数也相同的项称为同类项。 所有的常数项也叫同类项。 (设计目的:教师充分发
15、挥学生的主体作用,让学生从自己的视点去观察、归纳,让学生亲自体验知识获得的过程,享受成功的喜悦。) (三)深入思考,强化概念 思考: 1、同类项的判断依据是什么?有哪几个方面? 2、同类项与系数有关吗? 3、同类项与它们所含字母的顺序有关吗? 强化:课件展示课本练习1(设计目的:趁热打铁的简单练习,有利于巩固知识,使学生牢固掌握同类项的知识,增强应用意识。) (四)再创情境,引出法则 1.回顾引入问题:两个苹果加三个苹果等于几个苹果?一个橘子加两个橘子等于几个橘子? 2.合并同类项: 把多项式中的同类项合并成一项就叫做合并同类项.3.合并同类项的法则: 同类项的系数相加,所得结果作为系数,字母
16、和字母的指数不变。 (设计目的:以生活实例为切入点,通过对简单的、熟悉的数量运算,激发学生学习合并同类项及其法则的欲望,从而较自然的引入新课题。)4.快速巩固:课本练习2 (五)例题分析,合作交流 例1:合并下列多项式中的同类项: ? 4x2?2x?1?3x2?3x?2 ? 4a2?3b2?2ab?3a2?b2 111例2:求多项式3a?abc?c2?3a?c2的值,其中a?,b?2,c?3 336(设计目的:教师示范解题格式,规范操作,学生再加以运用,注重培养学生规范解题的能力。) (六)练习巩固,强化目标 (七)小结与评价 通过本节课的学习你有哪些收获? 同类项:(1)所含字母相同;(2)
17、相同字母的指数也相同 合并同类项法则(1)系数相加作为结果的系数。 (2)字母与字母的指数不变。 (八)作业布置: 课本P76 习题 第1、2题 李丽涛:合并同类项教案3 前旗二教科研课题“题组教学法”课题: 同类项 导入新课: 一知识链接 1运用有理数的运算律计算:(1)1002+2522=_,(2)100(-2)+252(-2)=_,(3)100t+252t=_, 思路点拨:根据逆用乘法对加法的分配律可得。2.请根据上面得到结论的方法探究下面各式的结果:(1)100t252t=()t 222(2)3x 2 x =()x (3)3ab2 4 ab2 =()ab2 上述三个二项式有什么共同特点
18、?_你能从中得出什么规律? 目标一:理解同类项的概念,在具体情景中,认识同类项。自主学习 .观察:3x 和 2 x;3ab 与 4 ab 在结构上有哪些相同点和不同点? 2.归纳:_叫做同类项_也是同类项。如3和-5是同类项 题组一: 1、说法是否正确,正确地在括号内打“”,错误的打“”。 (1)3x与3mx是同类项。()(2)2ab与5ab是同类项。() (3)3x2y与1yx2是同类项.()(4)5ab2与2ab2c是同类项()3(5)23与32是同类项。() 2、下列各组式子中,是同类项的是() A、3x2y与?3xy2 B、3xy与?2yx C、2x与2x2 D、5xy与5yz 3、在
19、下列各组式子中,不是同类项的一组是()A、2,5 B、,3x2y C、3t,200t D、ab2,b2 a 4、已知xmy2与5ynx3是同类项,则m=,n=。 5、指出下列多项式中的同类项: (1)3x2y13y2x5;(2)3x2y2xy21xy23yx2; 小结:同类项的概念: 注意: 两个相同:字母相同;相同字母的指数相等。 两个无关:与系数无关;与字母顺序无关。 所有的常数项都是同类项。 两个项虽然所含字母相同,但相同字母的指数不全相同就不是同类项。拓展训练: 1、若5x3ym和?9xn?1y2是同类项,则m=_,n=_。 2、若把(st)、(st)分别看作一个整体,指出下面式子中的同类项。 (1)1(st)1(st)3(st)1(st); 3546(2)2(st)3(st)25(st)8(st)2(st)。 3、观察下列一串单项式的特点: xy,?2x2y,4x3y,?8x4y,16x5y,? (1)按此规律写出第6个单项式.(2)试猜想第n个单项式为多少?它的系数和次数分别是多少? 3.做练习册34页第一题 13