《数学-2023年高考终极押题猜想(新高考专用)(解析版).docx》由会员分享,可在线阅读,更多相关《数学-2023年高考终极押题猜想(新高考专用)(解析版).docx(85页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学终极押题猜想 押题猜想一 函数性质(奇偶性、对称性、周期性、单调性)的综合应用1押题猜想二 导数中的零点问题8押题猜想三 三角函数中的取值范围17押题猜想四 解三角形中的几何图形的计算22押题猜想五 外接球、内切球、棱切球28押题猜想六 立体几何中的翻折问题34押题猜想七 概率与实际生活密切联系48押题猜想八 离心率58押题猜想九 圆锥曲线中的面积问题64押题猜想十 数列放缩73押题猜想一 函数性质(奇偶性、对称性、周期性、单调性)的综合应用(多选题)已知函数满足:为偶函数;,是的导函数,则下列结论正确的是()A关于对称B的一个周期为C不关于对称D关于对称【答案】ABD【解析
2、】A选项,由两边求导得,即关于对称,故A正确;B选项,由为偶函数,知又,则,即的一个周期为,则的一个周期为,故B正确;C选项,注意到当时,则,即此时关于,即对称,故C错误;D选项,由为偶函数,知关于对称,即,则,即关于对称,故D正确故选:ABD【押题解读】从近五年的高考情况来看,函数的单调性、奇偶性、周期性是高考的必考内容,重点关注单调性、奇偶性结合在一起,与函数图像、函数零点和不等式相结合进行考查,解题时要充分运用转化思想和数形结合思想【考前秘笈】(1)若函数有两条对称轴,则函数是周期函数,且;(2)若函数的图象有两个对称中心,则函数是周期函数,且;(3)若函数有一条对称轴和一个对称中心,则
3、函数是周期函数,且;(4)若函数关于直线对称,则;(5)若函数关于点对称,则;(6)函数与关于轴对称,函数与关于原点对称1(多选题)(2023全国模拟预测)已知函数,的定义域均为,其导函数分别为,若,且,则()A函数为偶函数B函数的图像关于点对称CD【答案】ACD【解析】因为,所以又因为,所以于是可得,令,则,所以所以,即函数的图像关于直线对称,即因为,所以函数的图像关于点对称,即,所以,即,于是,所以函数是周期为4的周期函数因为函数的图像关于直线对称,所以的图像关于轴对称,所以为偶函数,所以A选项正确将的图像作关于轴对称的图像可得到的图像,再向右平移3个单位长度,可得到的图像,再将所得图像向
4、下平移2个单位长度,即可得到的图像,因此函数也是周期为4的函数又的图像关于点对称,所以的图像关于点对称,所以B选项不正确因为,令,得,即,所以;令,得,所以,所以,所以,所以C选项正确因为,所以,则有,可得,所以D选项正确故选:ACD2(多选题)(2023福建莆田统考二模)已知函数的定义域为R,且为偶函数,则()AB为偶函数CD【答案】ACD【解析】对于A,因为,令,则,故,则,故A正确;对于B,因为的定义域为,关于原点对称,令,则,又不恒为0,故,所以为奇函数,故B错误;对于C,因为为偶函数,所以,令,则,故,令,则,故,又为奇函数,故,所以,即,故C正确;对于D,由选项C可知,所以,故的一
5、个周期为6,因为,所以,对于,令,得,则,令,得,则,令,得,令,得,令,得,所以,又,所以由的周期性可得:,故D正确故选:ACD3(多选题)(2023浙江模拟预测)已知连续函数及其导函数的定义域均为,记,若为奇函数,的图象关于y轴对称,则()ABC在上至少有2个零点D【答案】AC【解析】定理1:若函数连续且可导,则图象关于直线对称导函数图象关于点对称定理2:若函数连续且可导,则图象关于点对称导函数图象关于直线对称以下证明定理1,定理2:证明:若函数图象关于直线对称,则,则,所以导函数图象关于点对称若导函数图象关于点对称,则,令,则,则(c为常数),又,所以,则,所以图象关于直线对称若函数图象
6、关于点对称,则,则,所以图象关于直线对称若导函数图象关于直线对称,则,令,则,则(c为常数),又,所以,则,所以图象关于点对称故下面可以直接引用以上定理由的图象关于y轴对称,则,两边求导得,即,的图象关于点对称,又由定理2,所以的图象关于直线对称又为奇函数,则,的图象关于点对称,又由定理1,则的图象关于对称为和的一个周期,A正确;,B错误;由,得在上至少有2个零点C正确;由的图象关于对称,且周期为3,则的图象关于对称,D错误故选:AC4(多选题)(2023山东潍坊一中校联考模拟预测)已知函数的定义域为,为奇函数,且对于任意,都有,则()ABC为偶函数D为奇函数【答案】BCD【解析】由,得由是奇
7、函数,得,即,所以,即,所以,故选项A错误;由,得,由,得,所以,故选项B正确;由,得,即为偶函数,故选项C正确;由,得,则,即为奇函数,故选项D正确故选:BCD5(多选题)(2023全国模拟预测)设定义在R上的函数与的导函数分别为和,若, ,且为奇函数,则下列说法中一定正确的是()AB函数的图象关于对称CD【答案】AC【解析】因为为奇函数,所以,取可得,A对,因为,所以;所以,又,故,所以函数的图象关于点对称,B错,因为,所以,所以,为常数,因为,所以,所以,取可得,所以,又,所以,所以,所以,故函数为周期为4的函数,因为,所以,所以,所以,所以,由已知无法确定的值,故的值不一定为0,D错;
8、因为,所以,所以,故函数为周期为4的函数,所以函数为周期为4的函数,又,所以,所以,C对,故选:AC押题猜想二 导数中的零点问题已知函数(1)若在R上单调递减,求a的取值范围;(2)当时,求证在上只有一个零点,且【解析】(1)因为,所以由在R上单调递减,得,即在R上恒成立令,则当时,单调递增;当时,单调递减故,解得,即a的取值范围为(2)由(1)可知,在上单调递减,且,故,使得当时,函数单调递增;当时,函数单调递减因为,所以在上只有一个零点,故函数在上只有一个零点因为,所以要证,即证,即证因为,得,所以,故需证即可令,则当时,单调递增;当时,单调递减故即,原不等式即证【押题解读】导数压轴题以零
9、点为主,重点关注由函数的零点生成的各类问题的求解思路,本质是如何构造函数以及变形函数求解难题【考前秘笈】函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与轴(或直线)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像;第三步:结合图像判断零点或根据零点分析参数1(2023全国模拟预测)已知函数,(1)当时,求曲线在点处的切线方程;(2)已知函数,若在上有两个零点,求实数的取值范围【解析】(1)由可得,故,因为函数的定义域为
10、,所以,所以曲线在点处的切线方程为,即(2),令,因为在上有两个零点,所以函数在上有两个零点,因为,令,则,设,则,所以函数在上单调递增,故在上单调递增,所以, 当时,当且仅当时等号成立,所以函数在上单调递增,所以函数在上单调递增,又,所以, 当且仅当时取等号,所以函数在上单调递增,所以,当且仅当时取等号,故函数在上有一个零点,矛盾;当时,因为,所以,故,所以,又在上单调递增,所以存在,使得,当时,函数在上单调递减,当时,函数在上单调递增,又,所以,当时,所以存在,使得,所以当时,函数在上单调递减,当时,函数在上单调递增,又,所以为函数的一个零点,且,又当时,所以函数在上存在一个零点,故函数在
11、上有两个零点,所以函数在上有两个零点,综上所述,实数的取值范围为2(2023河南洛阳统考模拟预测)已知函数(1)若,求的极值;(2),若函数有两个零点,且,求证:【解析】(1)当时,定义域为,求导得,令,求导得,当时,当时,即函数在上单调递增,在上单调递减,当时,取得极大值,无极小值,所以的极大值为,无极小值(2)依题意,因为函数有两个零点,且,而,则,因此函数的两个零点分别是直线与函数图象的两个交点横坐标,当时,当时,则函数在上单调递增,在上单调递减,而,时,恒有,于是,即,令,显然有,则有,令,求导得,即函数在上单调递增,即有,从而,又,所以3(2023四川成都石室中学校考三模)已知函数(
12、1)若函数在处的切线斜率为,求实数的值;(2)若函数有且仅有三个不同的零点,分别设为,(i)求实数的取值范围;(ii)求证:【解析】(1)因为,函数在处的切线斜率为,所以,则;(2)i)因为,所以,令,因为函数有且仅有三个不同的零点,所以函数有且仅有三个不同的零点,设,则,当即时,所以在上单调递减,所以不可能有三个不同的零点,即函数不可能有三个不同的零点,舍去;当即时,有两个不同的零点,由,得,所以,又因为开口向下,所以当时,在上单调递减;当时,在上单调递增;当时,在上单调递减,因为,且,所以,所以,因为,令,则,所以在上单调递增,所以,即,由函数零点存在性定理可知,在区间上有唯一的一个零点,
13、因为,又,所以,则,所以在区间上有唯一的一个零点,故当时,有且仅有三个不同的零点,2,综上所述,若函数有且仅有三个不同的零点,则实数的取值范围是;ii)证明:因为函数的三个不同的零点分别为,所以由i)可知,4(2023广东汕头统考二模)已知函数,(1)若函数存在极值点,且,其中,求证:;(2)用表示m,n中的最小值,记函数,若函数有且仅有三个不同的零点,求实数a的取值范围【解析】(1)由题意,当时,恒成立,没有极值当时,令,即,解之得,当时,单调递增;当时,单调递减;当时, 单调递增时,有极大值为,时,有极小值为,当时,要证,即证,代入计算有,则有符合题意,即得证;当时,要证,即证,代入计算有
14、,则有符合题意,即得证综上,当为极大值点和极小值点时,均成立(2)当时,故函数在时无零点;当时,若,则,故是函数的一个零点;若,则,故时函数无零点当时,因此只需要考虑,由题意,当时,恒成立,在上单调递增,在恒成立,即在内无零点,也即在内无零点;当时,恒成立,在上单调递减,即在内有1个零点,也即在内有1个零点;时,函数在上单调递减,若,即时,在内无零点,也即在内无零点; 若,即时,在内有唯一的一个零点,也即在内有唯一的零点;若,即时,由,时,在内有两个零点综上所述,当时,函数有3个零点押题猜想三 三角函数中的取值范围若存在实数,使函数在上有且仅有2个零点,则的取值范围为_【答案】【解析】因为,由
15、,得到,所以或,所以或,又因为存在实数,使函数在上有且仅有2个零点,所以且,即且,解得故答案为:【押题解读】在近几年的高考中,三角函数是高考必考的重点内容,根据三角函数相关性质求解参数的值或取值范围是三角函数中比较典型的一类问题,它能有效考查学生对三角函数基本性质的掌握程度,是高考常用的考查形式【考前秘笈】1、在区间内没有零点同理,在区间内没有零点2、在区间内有个零点同理在区间内有个零点 3、在区间内有个零点 同理在区间内有个零点4、已知一条对称轴和一个对称中心,由于对称轴和对称中心的水平距离为,则5、已知单调区间,则1(2023吉林统考三模)规定:设函数,若函数在上单调递增,则实数的取值范围
16、是_【答案】(注:可以用不等关系表示)【解析】函数,当时,当时,时,在上单调递增,则有或,解得,当时,有解;或,当时,有解实数的取值范围是故答案为:2(2023四川成都统考模拟预测)定义在上的函数在区间内恰有两个零点和一个极值点,则的取值范围是_【答案】【解析】设函数的最小正周期为,由正弦型函数可知:两个零点之间必存在极值点,两个极值点之间必存在零点,则,则,注意到,解得,则,由题意可得:,解得,故的取值范围为故答案为:3(2023安徽安庆校联考模拟预测)已知函数的图象经过点,若函数在区间上既有最大值,又有最小值,而且取得最大值、最小值时的自变量x值分别只有一个,则实数的取值范围是_【答案】【
17、解析】由条件知,于是,又,所以,当时,因,所以,要满足条件,则,解得;当时,因为,所以,要满足条件,则,解得,综上,实数的取值范围是故答案为:4(2023内蒙古包头统考一模)记函数的最小正周期为T若为的极小值点,则的最小值为_【答案】14【解析】 因为所以最小正周期,又所以,即;又为的极小值点,所以,解得,因为,所以当时;故答案为:14押题猜想四 解三角形中的几何图形的计算平面多边形中,三角形具有稳定性,而四边形不具有这一性质如图所示,四边形的顶点在同一平面上,已知(1)当长度变化时,是否为一个定值?若是,求出这个定值;若否,说明理由(2)记与的面积分别为和,请求出的最大值【解析】(1)法一:
18、在中,由余弦定理,得,即,同理,在中,即,得,所以当长度变化时,为定值,定值为1;法二:在中,由余弦定理得,即,同理,在中,所以,化简得,即,所以当长度变化时,为定值,定值为1;(2),令,所以,所以,即时, 有最大值为14【押题解读】几何条件下的解三角形问题是近几年高考的热点,体现了数学运算和直观想象的核心素养解决这类问题既要抓住几何条件,也要灵活选择正弦定理、余弦定理、三角恒等变换公式【考前秘笈】三角形中几何计算问题的解题思路:(1)正确挖掘图形中的几何条件简化运算是解题要点,善于应用正弦定理、余弦定理,只需通过解三角形,一般问题便能很快解决(2)此类问题突破的关键是仔细观察,发现图形中较
19、隐蔽的几何条件1(2023广东广州统考二模)记的内角、的对边分别为、,已知(1)求;(2)若点在边上,且,求【解析】(1)因为,由余弦定理可得,化简可得,由余弦定理可得,因为,所以,(2)因为,则为锐角,所以,因为,所以,所以,设,则,在和中,由正弦定理得,因为,上面两个等式相除可得,得,即,所以,2(2023全国模拟预测)记的内角,的对边分别为,已知,为上一点,(1)求的值(2)若,求与的大小【解析】(1)因为,所以,则由正弦定理,得,则由余弦定理得又因为,所以,在中,由正弦定理,得,则,同理,在中,由正弦定理,得,由,得,又因为,所以,则,即,所以,即;(2)由(1)可知,因为,所以,在中
20、,由余弦定理得,在中,由余弦定理得,由,得,又因为,所以,所以,所以,又,所以3(2023江西九江统考一模)在中,为的角平分线上一点,且与分别位于边的两侧,若(1)求的面积;(2)若,求的长【解析】(1)在中,即,解得(负根舍),所以(2)因为,平分,所以,又,所以,在中,由正弦定理,得,在中,由正弦定理,得,得,所以,又,且,所以,将代入,得,所以4(2023全国高三专题练习)如图,在平面四边形中,的面积是的面积的倍,(1)求的大小;(2)若点在直线同侧,求的取值范围【解析】(1)设,则,因,则,而,则有,即,又,因此,所以(2)由(1)知,连AC,有,则,而,中,由正弦定理有,又,令,则,
21、因此,因,则,有,即,所以的取值范围为押题猜想五 外接球、内切球、棱切球(多选题)已知圆锥PE的顶点为P,E为底面圆的圆心,圆锥PE的内切球球心为,半径为r;外接球球心为,半径为R以下选项正确的有()A当与重合时,B当与重合时,C若,则圆锥PE的体积的最小值为 D若,则圆锥PE的体积的最大值为 【答案】BC【解析】设为底面圆的一条直径,圆锥的内切球半径和外接球半径分别为其轴截面内切圆半径和外接圆半径当与重合时,如图,为重合的圆心(球心),为一个切点,由,均为对应角的角平分线,所以,所以,又,所以为等边三角形,故,所以,所以A错误;当与重合时,如图:,所以,故,所以,故B正确;若,设圆锥底面半径
22、为,则,设圆锥的高为,则母线长为,轴截面的面积,即,平方整理得,圆锥的体积,所以当时,最小,最小值为,故C正确;若,设圆锥底面半径为,圆锥的高为,则,易得,所以,圆锥的体积,则当 时,当时,所以当时,最大,最大值为,故D错误故选BC【押题解读】纵观近几年高考对于组合体的考查,与球相关的外接与内切问题是高考命题的热点之一高考命题小题综合化倾向尤为明显,要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答从近几年全国高考命题来看,这部分内容以选择题、填空题为主,大题很少见,此部分是重点也是一个难点,属于中等难度【考前秘笈】在解决外接球、内切球、棱切球问题时,先看看空间几何体是否有线面垂直条件
23、,如果有,则联想常见模型的思路,如果没有,看看空间几何体是否有三个两两垂直的墙角模型,如果有,则联想补形法的思路,如果没有,则只能老老实实找到球心的大致位置,再利用勾股定理进行求解另外强调一点,如果遇到的题目中,没有线面垂直,也没有三个两两垂直,也找不到球心大致的位置,那么此时,这个题的难度肯定较大,需要静心分析题目的已知条件,挖掘出隐藏在题目中的信息,等条件挖掘出来后,从而进行求解1(2023全国模拟预测)如图所示的三棱锥中,且,则其外接球体积的最小值为()ABCD【答案】A【解析】因为,且,平面,平面,所以平面,又因为,且,平面,平面,所以平面,所以可以将三棱锥放入一个长方体中,该长方体以
24、为长,宽,高,如图所示,则长方体的外接球就是三棱锥的外接球,下面计算该长方体外接球半径的最小值;因为,所以,所以,即,所以,所以该长方体外接球体积的最小值为:,所以三棱锥的外接球体积的最小值为,故选:A2(2023广东统考模拟预测)已知某圆锥的内切球(球与圆锥侧面底面均相切)的体积为,则该圆锥的表面积的最小值为()ABCD【答案】A【解析】设圆锥的内切球半径为,则,解得,设圆锥顶点为,底面圆周上一点为,底面圆心为,内切球球心为,内切球切母线于,底面半径,则,又,故,又,故,故该圆锥的表面积为,令,则,当且仅当,即时取等号故选:A3(2023陕西商洛统考二模)在三棱锥中,底面是边长为2的等边三角
25、形,是以为斜边的等腰直角三角形,若二面角的大小为,则三棱锥外接球的表面积为_【答案】/【解析】如图,取BC的中点H,连接AH,DH,由题意,所以,所以为二面角的平面角,所以,因为是以为斜边的等腰直角三角形,且,所以,又是边长为2的等边三角形,所以,过点H作与平面ABC垂直的直线,则球心O在该直线上,设球的半径为R,连接OA,OD,可得,在中,利用余弦定理可得,所以,解得R,所以其外接球的表面积为故答案为:4(2023河南高三清丰县第一高级中学校联考阶段练习)在正三棱锥中,若球O与三棱锥的六条棱均相切,则球O的表面积为_【答案】【解析】如图示:取的中心E,连接PE,则平面ABC,且与棱均相切的球
26、的球心O在PE上连接AE并延长交BC于D,则D为BC的中点,连接OD因为平面ABC,所有 因为平面,平面,所有平面因为平面,所有过O作,交PA于点F球O的半径为r,则由题意:为正三角形,因为,所以,因为,所以,所以设,所以,因为,所以,解得:,所以,故球O的表面积为故答案为:押题猜想六 立体几何中的翻折问题(多选题)如图1,在中,DE是的中位线,沿DE将进行翻折,连接AB,AC得到四棱锥(如图2),点F为AB的中点,在翻折过程中下列结论正确的是()A当点A与点C重合时,三角形ADE翻折旋转所得的几何体的表面积为B四棱锥的体积的最大值为C若三角形ACE为正三角形,则点F到平面ACD的距离为D若异
27、面直线AC与BD所成角的余弦值为,则A、C两点间的距离为2【答案】AB【解析】由题意,在中,DE是的中位线,对于A项,当点A与点C重合时,三角形ADE翻折旋转所得的几何体为底面半径为,高为的半个圆锥,三角形ADE翻折旋转所得的几何体的表面积为:,故A正确;对于B项,设,则,设点到的距离为,则,四棱锥的体积为:,在中,四棱锥的体积的最大值为,故B正确;对于C,D项,当三角形ACE为正三角形时,取中点为,的中点,连接,连接,在中,点F为AB的中点,由于分别是的中点,所以,因此四边形为平行四边形,故由于平面,所以平面,平面,所以,因此四边形为矩形,则由于,所以平面,平面,所以,在中,为的中点,在中,
28、为的中点,点F为AB的中点,而平面,即有平面,又平面,因此平面平面,而平面平面,所以点F到平面ACD的距离等于点F到直线DG的距离,则,在中,在矩形中,设点F到平面ACD的距离为,在中,即,解得:,故C错误,对于D,由于,所以四边形为平行四边形,故,又,此时即为异面直线AC与BD所成的角或补角,由于,,由余弦定理,解得,则A,C两点间的距离为,故D错误;故选:AB【押题解读】图形的展开与翻折问题是一个由抽象到直观,由直观到抽象的过程高考中,图形的展开与翻折常与空间中的平行、垂直以及空间角相结合命题因此,关注图形的展开与折叠问题是非常有必要的图形的展开与翻折问题是高考常见的考查形式【考前秘笈】解
29、决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量一般情况下,长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形解决折叠问题的关注点:平面图形折叠成空间图形,主要抓住变与不变的量,所谓不变的量,即是指“未折坏”的元素,包括“未折坏”的边和角,一般优先标出未折坏的直角(从而观察是否存在线面垂直),然后标出其他特殊角,以及所有不变的线段1(多选题)(2023山东潍坊统考模拟预测)如图,将一副三角板拼成平面四边形,将等腰直角沿向上翻折,得三棱锥,设,点分别为棱的中点,为线段上的动点,下列说法正确的
30、是()A不存在某个位置,使B存在某个位置,使C当三棱锥体积取得最大值时,AD与平面ABC成角的正弦值为D当时,的最小值为【答案】BD【解析】当平面与平面垂直时,平面与平面的交线为,平面,平面,又平面,故A错误,B正确;对于C,当三棱锥体积取得最大值时,顶点A到底面距离最大,即平面与平面垂直时,由上面可知,平面,故AD与平面ABC成角为,因为,所以,则,即AD与平面ABC成角的正弦值为,故C错误;对于D,当时,因为为的中点,所以,则,又因为的中点,所以,又,所以,所以,如图将沿旋转,使其与在同一平面内,则当三点共线时,最小,即的最小值为,在中,则,所以,所以的最小值为,故D正确故选:BD2(20
31、23陕西西安西安中学校考模拟预测)如图,已知ABC是边长为2的等边三角形,D是AB的中点,DHBC,如图,将BDH沿边DH翻折至BDH(1)在线段BC上是否存在点F,使得AF平面BDH?若存在,求的值;若不存在,请说明理由;(2)若平面BHC与平面BDA所成的二面角的余弦值为,求三棱锥B-DCH的体积【解析】(1)存在点F满足题意,且,理由如下: 在图甲中,取BC的中点M,连接AM,如图所示因为ABC是等边三角形, BC的中点为M,所以,因为DHBC,所以AMDH,在图乙中,AMDH,AM平面BDH,DH平面BDH,所以AM平面BDH,且;在线段BC上取点F使,连接MF,FA,如图所示因为,所
32、以MFBH,又因为平面BDH,平面BDH,所以MF平面BDH,又因为MFAM=M,MF,AM平面AMF,所以平面AMF/平面BDH,又因为AF平面AMF,所以AF平面BDH(2)在图中,DHHC,DHHB,HCHB=H,HC,HB平面BHC,HC,HB平面BHC,所以DH平面BHC,以H为原点建立的空间直角坐标系,如图所示则H(0,0,0),A(,0),C(,0,0),D(0,0),设,则,设平面BDA的法向量为则,即,令,则,所以,易知平面BHC的一个法向量因为平面BHC与平面BDA所成的二面角的余弦值为,所以,化简整理得:,所以,所以B(,0,),所以三棱锥B-DCH的高为,又因为底面积,
33、所以三棱锥的体积为3(2023湖南高三长郡中学校联考阶段练习)如图,已知是边长为2的等边三角形,是的中点,如图,将沿边翻折至(1)在线段上是否存在点,使得平面?若存在,求的值;若不存在,请说明理由;(2)若平面与平面所成的二面角的余弦值为,求三棱锥的体积【解析】(1)存在点满足题意,且,理由如下:在图中,取的中点,连接,则,在图中,平面,平面,所以平面,且;在线段上取点使,连接,则,同理可得平面,又因为,平面,所以平面平面,又因为平面,所以平面(2)在图中,平面,所以平面,法一:以为原点建立如图所示的空间直角坐标系,则,设,则,设平面的法向量为,则,令,则,即,易知平面的一个法向量,若平面BH
34、C与平面BDA所成的二面角的余弦值为,则,化简整理得:,所以,所以,则三棱锥的高为,又因为底面积,所以三棱锥的体积为法二:延长相交于点,事实上点即为点,则平面平面,过作,垂足为,连接,因为平面,平面,所以,又,平面,所以平面,平面,则,所以即为平面与平面所成的二面角的平面角,即,所以,即,即,又,所以,在中,设点到的距离为,由等面积法可得,解得,即三棱锥的高,又的面积为,所以三棱锥的体积为4(2023全国高三专题练习)如图1,在边长为4的菱形ABCD中,DAB=60,点,别是边BC,CD的中点,沿MN将翻折到的位置,连接PA、PB、PD,得到如图2所示的五棱锥PABMND(1)在翻折过程中是否
35、总有平面PBD平面PAG?证明你的结论;(2)当四棱锥PMNDB体积最大时,在线段PA上是否存在一点Q,使得平面QMN与平面PMN夹角的余弦值为?若存在,试确定点Q的位置;若不存在,请说明理由【解析】(1)在翻折过程中总有平面平面,证明如下:点,分别是边,的中点,又,且是等边三角形,是的中点,菱形的对角线互相垂直,平面,平面,平面,平面,平面,平面平面(2)由题意知,四边形为等腰梯形,且,所以等腰梯形的面积,要使得四棱锥体积最大,只要点到平面的距离最大即可,当平面时,点到平面的距离的最大值为假设符合题意的点存在以为坐标原点,所在直线分别为轴、轴、轴,建立如图所示空间直角坐标系,则,又,又,且,
36、平面,平面,平面,故平面的一个法向量为,设(),故,平面的一个法向量为,则,即令,所以,则平面的一个法向量,设二面角的平面角为,则,即,解得:,故符合题意的点存在且为线段的中点5(2023山东青岛统考模拟预测)已知平面四边形ABCE(图1)中,均为等腰直角三角形,M,N分别是AC,BC的中点,沿AC将翻折至位置(图2),拼成三棱锥D-ABC(1)求证:平面平面;(2)当二面角的二面角为60时,求直线与平面所成角的正弦值;求C点到面ABD的距离【解析】(1)因为分别是的中点,所以,又,所以,因为,所以又,平面,所以平面,因为平面,所以平面平面,(2)因为,所以就是二面角的平面角,由已知,因为为以
37、为斜边的等腰直角三角形,为的中点,所以,又,所以为等边三角形,取中点,连接,则,因为平面平面,平面平面,平面,所以面如图,以直线为轴,以为轴建立空间直角坐标系, 设面的一个法向量则有,所以,取,则,所以为平面的一个法向量,所以,所以直线与面所成角的正弦值为,点到面的距离押题猜想七 概率与实际生活密切联系今年月以来,世界多个国家报告了猴痘病例,非洲地区猴痘地方性流行国家较多月日,中国疾控中心发布了我国首例“输入性猴痘病例”的溯源公告我国作为为人民健康负责任的国家,对可能出现的猴痘病毒防控已提前做出部署,同时国家卫生健康委员会同国家中医药管理局制定了猴痘诊疗指南(年版)此指南中指出:猴痘病人潜伏期
38、天;既往接种过天花疫苗者对猴痘病毒存在一定程度的交叉保护力据此,援非中国医疗队针对援助的某非洲国家制定了猴痘病毒防控措施之一是要求与猴痘病毒确诊患者的密切接触者集中医学观察天在医学观察期结束后发现密切接触者中未接种过天花疫苗者感染病毒的比例较大对该国家个接种与未接种天花疫苗的密切接触者样本医学观察结束后,统计了感染病毒情况,得到下面的列联表:接种天花疫苗与否/人数感染猴痘病毒未感染猴痘病毒未接种天花疫苗3060接种天花疫苗2090(1)根据小概率值的独立性检验,判断密切接触者感染猴痘病毒与未接种天花疫苗是否有关?(2)以样本中结束医学现察的密切接触者感染猴痘病毒的频率估计概率现从该国所有结束医
39、学观察的密切接触者中随机抽取人进行感染猴痘病毒人数统计,求其中至多有人感染猴痘病毒的概率:(3)该国现有一个中风险村庄,当地政府决定对村庄内所有住户进行排查在排查期间,发现一户口之家与确诊患者有过密切接触,这种情况下医护人员要对其家庭成员逐一进行猴痘病毒检测每名成员进行检测后即告知结果,若检测结果呈阳性,则该家庭被确定为“感染高危家庭”假设该家庭每个成员检测呈阳性的概率均为且相互独立记:该家庭至少检测了名成员才能确定为“感染高危家庭”的概率为求当为何值时,最大?附: 010050010270638416635【解析】(1)假设:密切接触者感染猴痘病毒与未接种天花疫苗无关,依题意有故假设不成立,
40、 没有的把握认为密切接触者感染猴痘病毒与未接种天花疫苗有关;(2)由题意得,该地区每名密切接触者感染病毒的概率为,设随机抽取的人中至多有人感染病毒为事件,则;(3),则,令;则 (舍去),随着的变化,的变化如下表:p+0-递增极大值递减综上,当 时,最大【押题解读】回顾近几年的高考试题,可以看出概率统计解答题,大多紧密结合社会实际,以现实生活为背景设置试题,注重知识的综合应用与实际应用,作为考查实践能力的重要载体,命题者要求考生会收集,整理、分析数据,能从大量数据中抽取对研究问题有用的信息,建立数学模型,再应用数学原理和数学工具解决实际问题,是高考常用的考查形式【考前秘笈】主要考查随机变量的概
41、率分布与数学期望,一定要根据有关概念,判断是等可能事件、互斥事件、相互独立事件还是独立重复试验,以便选择正确的计算方法,进行概率计算及离散型随机变量的分布列和数学期望的计算,也要掌握几种常见常考的概率分布模型:离散型有二项分布、超几何分布,连续型有正态分布1(2023浙江杭州统考二模)马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用其数学定义为:假设我们的序列状态是,那么时刻的状态的条件概率仅依赖前一状态,即现实生活中也存在着许多马尔科夫链,例如著名的赌徒模型假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率为,且每局赌赢可以赢得1元,每一局赌徒赌输的概率为,且赌输就要输掉1元赌徒会一直玩下去,直到遇到如下两种情况才会结束赌博游戏:一种是手中赌金为0元,即赌徒输光;一种是赌金达到预期的B元,赌徒停止赌博记赌徒的本金为,赌博过程如下图的数轴所示当赌徒手中有n元(,)时,最终输光的概率为,请回答下列问题:(1)请直接写