高三数学必修五知识难点总结2023.docx

上传人:1107088****qq.com 文档编号:92645867 上传时间:2023-06-09 格式:DOCX 页数:5 大小:39.10KB
返回 下载 相关 举报
高三数学必修五知识难点总结2023.docx_第1页
第1页 / 共5页
高三数学必修五知识难点总结2023.docx_第2页
第2页 / 共5页
点击查看更多>>
资源描述

《高三数学必修五知识难点总结2023.docx》由会员分享,可在线阅读,更多相关《高三数学必修五知识难点总结2023.docx(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、高三数学必修五知识难点总结2023高三数学第二章必修五知识点1一、函数的定义域的常用求法:1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于1;5、三角函数正切函数y=tanx中xk+/2;6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。二、函数的解析式的常用求法:1、定义法;2、换元法;3、待定系数法;4、函数方程法;5、参数法;6、配方法三、函数的值域的常用求法:1、换元法;2、配方法;3、判别式法;4、几何法;5、不等式法;6、单调性法;7、直接法四、函数的最值的常用求法:1、配方法;2、

2、换元法;3、不等式法;4、几何法;5、单调性法五、函数单调性的常用结论:1、若f(x),g(x)均为某区间上的增(减)函数,则f(x)+g(x)在这个区间上也为增(减)函数。2、若f(x)为增(减)函数,则-f(x)为减(增)函数。3、若f(x)与g(x)的单调性相同,则fg(x)是增函数;若f(x)与g(x)的单调性不同,则fg(x)是减函数。4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。六、函数奇偶性的常用结论:1、如果一个奇函数在x=0处有定义,则f(0)=0,如果一个函数y=f(x

3、)既是奇函数又是偶函数,则f(x)=0(反之不成立)。2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。3、一个奇函数与一个偶函数的积(商)为奇函数。4、两个函数y=f(u)和u=g(x)复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。5、若函数f(x)的定义域关于原点对称,则f(x)可以表示为f(x)=1/2f(x)+f(-x)+1/2f(x)+f(-x),该式的特点是:右端为一个奇函数和一个偶函数的和。高三数学第二章必修五知识点2一个推导利用错位相减法推导等比数列的前n项和:Sn=a1+a1q+a1q2+a1qn

4、-1,同乘q得:qSn=a1q+a1q2+a1q3+a1qn,两式相减得(1-q)Sn=a1-a1qn,Sn=(q1).两个防范(1)由an+1=qan,q0并不能立即断言an为等比数列,还要验证a10.(2)在运用等比数列的前n项和公式时,必须注意对q=1与q1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.三种方法等比数列的判断方法有:(1)定义法:若an+1/an=q(q为非零常数)或an/an-1=q(q为非零常数且n2且nN_),则an是等比数列.(2)中项公式法:在数列an中,an0且a=anan+2(nN_),则数列an是等比数列.(3)通项公式法:若数列通项公式可写成an=

5、cqn(c,q均是不为0的常数,nN_),则an是等比数列.注:前两种方法也可用来证明一个数列为等比数列.高三数学第二章必修五知识点3一、排列1定义(1)从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。(2)从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn.2排列数的公式与性质(1)排列数的公式:Amn=n(n-1)(n-2)(n-m+1)特例:当m=n时,Amn=n!=n(n-1)(n-2)321规定:0!=1二、组合1定义(1)从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个

6、元素的一个组合(2)从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。2比较与鉴别由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。三、排列组合与二项式定理知识点1.计数原理知识点乘法原理:N=n1n2n3nM(分步)加法原理:N=n1+n2+

7、n3+nM(分类)2.排列(有序)与组合(无序)Anm=n(n-1)(n-2)(n-3)-(n-m+1)=n!/(n-m)!Ann=n!Cnm=n!/(n-m)!m!Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1kk!=(k+1)!-k!3.排列组合混合题的解题原则:先选后排,先分再排排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)插空法(解决相间问题)间接法和去杂法等等在求解排列与组合应用问题时,应注意:(1)把具体问题转化或归结为排

8、列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)分析题目条件,避免“选取”时重复和遗漏;(4)列出式子计算和作答.经常运用的数学思想是:分类讨论思想;转化思想;对称思想.4.二项式定理知识点:(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+Cnran-rbr+-+Cnn-1abn-1+Cnnbn特别地:(1+x)n=1+Cn1x+Cn2x2+Cnrxr+Cnnxn主要性质和主要结论:对称性Cnm=Cnn-m二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项)所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+Cnr+Cnn=2n奇数项二项式系数的和=偶数项而是系数的和Cn0+Cn2+Cn4+Cn6+Cn8+=Cn1+Cn3+Cn5+Cn7+Cn9+=2n-1通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁