《高三数学必修四关键知识点总结2023.docx》由会员分享,可在线阅读,更多相关《高三数学必修四关键知识点总结2023.docx(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高三数学必修四关键知识点总结2023高三数学必修四知识点总结1立体几何初步(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
2、表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:上下底面是相似的平行多边形侧面是梯形侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面展开图是一个矩形。(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成
3、的曲面所围成的几何体几何特征:底面是一个圆;母线交于圆锥的顶点;侧面展开图是一个扇形。(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面展开图是一个弓形。(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:球的截面是圆;球面上任意一点到球心的距离等于半径。高三数学必修四知识点总结2向量的向量积定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作ab。若a、b不共线,则ab的模是:ab=|a|b|sina,b;ab的方向是:垂直于a和b,且a、b和ab按这个次序构成右手系。若a
4、、b共线,则ab=0。向量的向量积性质:ab是以a和b为边的平行四边形面积。aa=0。ab=ab=0。向量的向量积运算律ab=-ba;(a)b=(ab)=a(b);(a+b)c=ac+bc.注:向量没有除法,“向量AB/向量CD”是没有意义的。高三数学必修四知识点总结31、圆柱体:表面积:2Rr+2Rh体积:R2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:R2+R(h2+R2)的平方根体积:R2h/3(r为圆锥体低圆半径,h为其高,3、正方体a-边长,S=6a2,V=a34、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-底面积h-高V=Sh6、棱
5、锥S-底面积h-高V=Sh/37、棱台S1和S2-上、下底面积h-高V=hS1+S2+(S1S2)1/2/38、拟柱体S1-上底面积,S2-下底面积,S0-中截面积h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C底面周长S底底面积,S侧侧面积,S表表面积C=2rS底=r2,S侧=Ch,S表=Ch+2S底,V=S底h=r2h10、空心圆柱R-外圆半径,r-内圆半径h-高V=h(R2-r2)11、直圆锥r-底半径h-高V=r2h/312、圆台r-上底半径,R-下底半径,h-高V=h(R2+Rr+r2)/313、球r-半径d-直径V=4/3r3=d3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=h(3a2+h2)/6=h2(3r-h)/315、球台